Skip to contents

This computes a vector that contains the relative weight specific to each species for all individuals in an entire data frame.

Usage

wrAdd(wt, ...)

# Default S3 method
wrAdd(wt, len, spec, units = c("metric", "English"), ...)

# S3 method for class 'formula'
wrAdd(wt, data, units = c("metric", "English"), ...)

Arguments

wt

A numeric vector that contains weight measurements or a formula of the form wt~len+spec where “wt” generically represents the weight variable, “len” generically represents the length variable, and “spec” generically represents the species variable. Note that this formula can only contain three variables and they must be in the order of weight first, length second, species third.

...

Not used.

len

A numeric vector that contains length measurements. Not used if wt is a formula.

spec

A character or factor vector that contains the species names. Not used if wt is a formula.

units

A string that indicates whether the weight and length data in formula are in ("metric" (DEFAULT; mm and g) or "English" (in and lbs) units.

data

A data.frame that minimally contains variables of the the observed lengths, observed weights, and the species names given in the formula=.

Value

Returns A numeric vector that contains the computed relative weights, in the same order as in data=.

Details

This computes a vector that contains the relative weight specific to each species for all individuals in an entire data frame. The vector can be appended to an existing data.frame to create a variable that contains the relative weights for each individual. The relative weight value will be NA for each individual for which a standard weight equation does not exist in WSlit, a standard weight equation for the units given in units= does not exist in WSlit, a standard weight equation for the 75th percentile does not exist in WSlit, or if the individual is shorter or longer than the lengths for which the standard weight equation should be applied. Either the linear or quadratic equation has been listed as preferred for each species, so only that equation will be used. The use of the 75th percentile is by far the most common and, because this function is designed for use on entire data frames, it will be the only percentile allowed. Thus, to use equations for other percentiles, one will have to use “manual” methods. See WSlit and wsVal for more details about types of equations, percentiles, finding which species have published standard weight equations, etc. See the examples for one method for changing species names to something that this function will recognize.

IFAR Chapter

8-Condition.

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

See also

See wsVal, WSlit, and psdAdd for related functionality. See mapvalues for help in changing species names to match those in WSlit.

Author

Derek H. Ogle, DerekOgle51@gmail.com

Examples

## Create random data for three species
# just to control the randomization
set.seed(345234534)
dbt <- data.frame(species=factor(rep(c("Bluefin Tuna"),30)),
                  tl=round(rnorm(30,1900,300),0))
dbt$wt <- round(4.5e-05*dbt$tl^2.8+rnorm(30,0,6000),1)
dbg <- data.frame(species=factor(rep(c("Bluegill"),30)),
                  tl=round(rnorm(30,130,50),0))
dbg$wt <- round(4.23e-06*dbg$tl^3.316+rnorm(30,0,10),1)
dlb <- data.frame(species=factor(rep(c("Largemouth Bass"),30)),
                  tl=round(rnorm(30,350,60),0))
dlb$wt <- round(2.96e-06*dlb$tl^3.273+rnorm(30,0,60),1)
df <- rbind(dbt,dbg,dlb)
str(df)
#> 'data.frame':	90 obs. of  3 variables:
#>  $ species: Factor w/ 3 levels "Bluefin Tuna",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ tl     : num  1371 1558 2031 2226 2124 ...
#>  $ wt     : num  19231 38147 90530 104718 88761 ...

df$Wr1 <- wrAdd(wt~tl+species,data=df)
## same but with non-formula interface
df$Wr2 <- wrAdd(df$wt,df$tl,df$species)

## Same as above but using dplyr
if (require(dplyr)) {
  df <- mutate(df,Wr3a=wrAdd(wt,tl,species))
}

df
#>            species   tl       wt       Wr1       Wr2      Wr3a
#> 1     Bluefin Tuna 1371  19231.0        NA        NA        NA
#> 2     Bluefin Tuna 1558  38146.9        NA        NA        NA
#> 3     Bluefin Tuna 2031  90530.4        NA        NA        NA
#> 4     Bluefin Tuna 2226 104718.3        NA        NA        NA
#> 5     Bluefin Tuna 2124  88760.7        NA        NA        NA
#> 6     Bluefin Tuna 1685  62842.5        NA        NA        NA
#> 7     Bluefin Tuna 1951  79294.6        NA        NA        NA
#> 8     Bluefin Tuna 2136  88992.9        NA        NA        NA
#> 9     Bluefin Tuna 1638  50819.4        NA        NA        NA
#> 10    Bluefin Tuna 2060  84458.4        NA        NA        NA
#> 11    Bluefin Tuna 1857  64052.5        NA        NA        NA
#> 12    Bluefin Tuna 2382 125738.2        NA        NA        NA
#> 13    Bluefin Tuna 2021  85658.6        NA        NA        NA
#> 14    Bluefin Tuna 1862  58800.5        NA        NA        NA
#> 15    Bluefin Tuna 1814  60758.3        NA        NA        NA
#> 16    Bluefin Tuna 1953  78388.3        NA        NA        NA
#> 17    Bluefin Tuna 2079  79556.7        NA        NA        NA
#> 18    Bluefin Tuna 1840  66489.0        NA        NA        NA
#> 19    Bluefin Tuna 2049  92100.8        NA        NA        NA
#> 20    Bluefin Tuna 2545 142705.1        NA        NA        NA
#> 21    Bluefin Tuna 2037 100179.1        NA        NA        NA
#> 22    Bluefin Tuna 1310  16968.9        NA        NA        NA
#> 23    Bluefin Tuna 2028  79251.3        NA        NA        NA
#> 24    Bluefin Tuna 1767  49999.8        NA        NA        NA
#> 25    Bluefin Tuna 1970  76008.7        NA        NA        NA
#> 26    Bluefin Tuna 1866  61425.8        NA        NA        NA
#> 27    Bluefin Tuna 1777  56046.1        NA        NA        NA
#> 28    Bluefin Tuna 1682  55881.3        NA        NA        NA
#> 29    Bluefin Tuna 2295 112096.0        NA        NA        NA
#> 30    Bluefin Tuna 1889  59611.6        NA        NA        NA
#> 31        Bluegill  158     75.3  91.21118  91.21118  91.21118
#> 32        Bluegill  157     80.3  99.33729  99.33729  99.33729
#> 33        Bluegill  126     26.0  66.70289  66.70289  66.70289
#> 34        Bluegill  203    196.2 103.52426 103.52426 103.52426
#> 35        Bluegill  136     59.9 119.29213 119.29213 119.29213
#> 36        Bluegill  192    159.4 101.17226 101.17226 101.17226
#> 37        Bluegill  132     54.9 120.71165 120.71165 120.71165
#> 38        Bluegill  121     30.7  90.07870  90.07870  90.07870
#> 39        Bluegill  136     42.4  84.44051  84.44051  84.44051
#> 40        Bluegill   52     -5.8        NA        NA        NA
#> 41        Bluegill  111     17.5  68.35134  68.35134  68.35134
#> 42        Bluegill  226    267.8  98.98901  98.98901  98.98901
#> 43        Bluegill  217    238.2 100.74912 100.74912 100.74912
#> 44        Bluegill  163     86.9  94.93048  94.93048  94.93048
#> 45        Bluegill  119     18.3  56.74628  56.74628  56.74628
#> 46        Bluegill   79     17.9        NA        NA        NA
#> 47        Bluegill   78      3.5        NA        NA        NA
#> 48        Bluegill  172    113.9 104.11454 104.11454 104.11454
#> 49        Bluegill  106     28.0 127.42181 127.42181 127.42181
#> 50        Bluegill  122     36.7 104.78446 104.78446 104.78446
#> 51        Bluegill   95     14.1  92.27576  92.27576  92.27576
#> 52        Bluegill   47     -3.3        NA        NA        NA
#> 53        Bluegill  155     72.8  93.97048  93.97048  93.97048
#> 54        Bluegill  167    101.5 102.31474 102.31474 102.31474
#> 55        Bluegill  146     65.1 102.46768 102.46768 102.46768
#> 56        Bluegill  125     54.5 143.56312 143.56312 143.56312
#> 57        Bluegill   66     -7.1        NA        NA        NA
#> 58        Bluegill  160     92.1 107.00345 107.00345 107.00345
#> 59        Bluegill   85      1.7  16.08777  16.08777  16.08777
#> 60        Bluegill   72     19.0        NA        NA        NA
#> 61 Largemouth Bass  351    537.7  84.67395  84.67395  84.67395
#> 62 Largemouth Bass  297    480.0 130.58984 130.58984 130.58984
#> 63 Largemouth Bass  358    598.2  88.30540  88.30540  88.30540
#> 64 Largemouth Bass  451   1435.8  99.53461  99.53461  99.53461
#> 65 Largemouth Bass  375    676.8  85.83334  85.83334  85.83334
#> 66 Largemouth Bass  429   1230.9 100.50555 100.50555 100.50555
#> 67 Largemouth Bass  393    904.5  98.39245  98.39245  98.39245
#> 68 Largemouth Bass  168    104.3 183.16691 183.16691 183.16691
#> 69 Largemouth Bass  358    567.9  83.83256  83.83256  83.83256
#> 70 Largemouth Bass  396    900.0  95.49622  95.49622  95.49622
#> 71 Largemouth Bass  319    481.4 103.65713 103.65713 103.65713
#> 72 Largemouth Bass  325    476.1  96.45038  96.45038  96.45038
#> 73 Largemouth Bass  305    386.9  96.49068  96.49068  96.49068
#> 74 Largemouth Bass  343    505.1  85.77480  85.77480  85.77480
#> 75 Largemouth Bass  359    720.1 105.33403 105.33403 105.33403
#> 76 Largemouth Bass  295    349.4  97.18415  97.18415  97.18415
#> 77 Largemouth Bass  355    561.3  85.17216  85.17216  85.17216
#> 78 Largemouth Bass  336    630.0 114.45429 114.45429 114.45429
#> 79 Largemouth Bass  502   2053.0 100.22722 100.22722 100.22722
#> 80 Largemouth Bass  328    553.9 108.88706 108.88706 108.88706
#> 81 Largemouth Bass  387    899.9 102.94761 102.94761 102.94761
#> 82 Largemouth Bass  324    510.4 104.44721 104.44721 104.44721
#> 83 Largemouth Bass  387    875.1 100.11051 100.11051 100.11051
#> 84 Largemouth Bass  274    243.7  86.31732  86.31732  86.31732
#> 85 Largemouth Bass  437   1347.0 103.53134 103.53134 103.53134
#> 86 Largemouth Bass  313    412.5  94.51644  94.51644  94.51644
#> 87 Largemouth Bass  260    182.4  76.70383  76.70383  76.70383
#> 88 Largemouth Bass  441   1288.2  96.10274  96.10274  96.10274
#> 89 Largemouth Bass  266    265.7 103.69408 103.69408 103.69408
#> 90 Largemouth Bass  371    612.6  80.46670  80.46670  80.46670
 
## Example with only one species in the data.frame
bg <- droplevels(subset(df,species=="Bluegill"))
bg$Wr4 <- wrAdd(wt~tl+species,data=bg)