Skip to contents

Creates a vector of the Gabelhouse lengths specific to a species for all individuals in an entire data frame.

Usage

psdAdd(len, ...)

# Default S3 method
psdAdd(
  len,
  species,
  units = c("mm", "cm", "in"),
  use.names = TRUE,
  addSpec = NULL,
  addLens = NULL,
  verbose = TRUE,
  ...
)

# S3 method for class 'formula'
psdAdd(
  len,
  data = NULL,
  units = c("mm", "cm", "in"),
  use.names = TRUE,
  addSpec = NULL,
  addLens = NULL,
  verbose = TRUE,
  ...
)

Arguments

len

A numeric vector that contains lengths measurements or a formula of the form len~spec where “len” generically represents the length variable and “spec” generically represents the species variable. Note that this formula can only contain two variables and must have the length variable on the left-hand-side and the species variable on the right-hand-side.

...

Not used.

species

A character or factor vector that contains the species names. Ignored if len is a formula.

units

A string that indicates the type of units used for the lengths. Choices are mm for millimeters (DEFAULT), cm for centimeters, and in for inches.

use.names

A logical that indicates whether the vector returned is numeric (=FALSE) or string (=TRUE; default) representations of the Gabelhouse lengths. See details.

addSpec

A character vector of species names for which addLens will be provided.

addLens

A numeric vector of lengths that should be used in addition to the Gabelhouse lengths for the species in addSpec. See examples.

verbose

A logical that indicates whether detailed messages about species without Gabelhouse lengths or with no recorded values should be printed or not.

data

A data.frame that minimally contains the length measurements and species names if len is a formula.

Value

A numeric or factor vector that contains the Gabelhouse length categories.

Details

This computes a vector that contains the Gabelhouse lengths specific to each species for all individuals in an entire data frame. The vector can be appended to an existing data.frame to create a variable that contains the Gabelhouse lengths for each individual. The Gabelhouse length value will be NA for each individual for which Gabelhouse length definitions do not exist in PSDlit. Species names in the data.frame must be the same as those used in PSDlit. See the examples for one method for changing species names to something that this function will recognize.

Individuals shorter than “stock” length will be listed as substock if use.names=TRUE or 0 if use.names=FALSE.

Additional lengths to be used for a species may be included by giving a vector of species names in addSpec and a corresponding vector of additional lengths in addLens. Note, however, that use.names will be reset to FALSE if addSpec and addLens are specified, as there is no way to order the names for all species when additional lengths are used.

IFAR Chapter

6-Size Structure.

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Guy, C.S., R.M. Neumann, and D.W. Willis. 2006. New terminology for proportional stock density (PSD) and relative stock density (RSD): proportional size structure (PSS). Fisheries 31:86-87. [Was (is?) from http://pubstorage.sdstate.edu/wfs/415-F.pdf.]

Guy, C.S., R.M. Neumann, D.W. Willis, and R.O. Anderson. 2006. Proportional size distribution (PSD): A further refinement of population size structure index terminology. Fisheries 32:348. [Was (is?) from http://pubstorage.sdstate.edu/wfs/450-F.pdf.]

Willis, D.W., B.R. Murphy, and C.S. Guy. 1993. Stock density indices: development, use, and limitations. Reviews in Fisheries Science 1:203-222. [Was (is?) from http://web1.cnre.vt.edu/murphybr/web/Readings/Willis%20et%20al.pdf.]

See also

psdVal, psdCalc, psdPlot, PSDlit, and wrAdd for related functions. See mapvalues for help in changing species names to match those in PSDlit.

Author

Derek H. Ogle, DerekOgle51@gmail.com

Examples

## Create random data for three species
# only for repeatability
set.seed(345234534)
dbg <- data.frame(species=factor(rep(c("Bluegill"),30)),
                  tl=round(rnorm(30,130,50),0))
dbg$wt <- round(4.23e-06*dbg$tl^3.316+rnorm(30,0,10),1)
dlb <- data.frame(species=factor(rep(c("Largemouth Bass"),30)),
                  tl=round(rnorm(30,350,60),0))
dlb$wt <- round(2.96e-06*dlb$tl^3.273+rnorm(30,0,60),1)
dbt <- data.frame(species=factor(rep(c("Bluefin Tuna"),30)),
                  tl=round(rnorm(30,1900,300),0))
dbt$wt <- round(4.5e-05*dbt$tl^2.8+rnorm(30,0,6000),1)
df <- rbind(dbg,dlb,dbt)
str(df)
#> 'data.frame':	90 obs. of  3 variables:
#>  $ species: Factor w/ 3 levels "Bluegill","Largemouth Bass",..: 1 1 1 1 1 1 1 1 1 1 ...
#>  $ tl     : num  42 73 152 184 167 94 138 169 86 157 ...
#>  $ wt     : num  -12.5 4.8 86.6 134.4 91.9 ...

## Examples (non-dplyr)
# Add variable using category names -- formula notation
df$PSD <- psdAdd(tl~species,data=df)
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
head(df)
#>    species  tl    wt      PSD
#> 1 Bluegill  42 -12.5 substock
#> 2 Bluegill  73   4.8 substock
#> 3 Bluegill 152  86.6  quality
#> 4 Bluegill 184 134.4  quality
#> 5 Bluegill 167  91.9  quality
#> 6 Bluegill  94  38.3    stock
# Add variable using category names -- non-formula notation
df$PSD1 <- psdAdd(df$tl,df$species)
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
head(df)
#>    species  tl    wt      PSD     PSD1
#> 1 Bluegill  42 -12.5 substock substock
#> 2 Bluegill  73   4.8 substock substock
#> 3 Bluegill 152  86.6  quality  quality
#> 4 Bluegill 184 134.4  quality  quality
#> 5 Bluegill 167  91.9  quality  quality
#> 6 Bluegill  94  38.3    stock    stock
# Add variable using length values as names
df$PSD2 <- psdAdd(tl~species,data=df,use.names=FALSE)
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
head(df)
#>    species  tl    wt      PSD     PSD1 PSD2
#> 1 Bluegill  42 -12.5 substock substock    0
#> 2 Bluegill  73   4.8 substock substock    0
#> 3 Bluegill 152  86.6  quality  quality  150
#> 4 Bluegill 184 134.4  quality  quality  150
#> 5 Bluegill 167  91.9  quality  quality  150
#> 6 Bluegill  94  38.3    stock    stock   80
# Add additional length and name for Bluegill
df$PSD3 <- psdAdd(tl~species,data=df,addSpec="Bluegill",addLens=175)
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
head(df)
#>    species  tl    wt      PSD     PSD1 PSD2 PSD3
#> 1 Bluegill  42 -12.5 substock substock    0    0
#> 2 Bluegill  73   4.8 substock substock    0    0
#> 3 Bluegill 152  86.6  quality  quality  150  150
#> 4 Bluegill 184 134.4  quality  quality  150  175
#> 5 Bluegill 167  91.9  quality  quality  150  150
#> 6 Bluegill  94  38.3    stock    stock   80   80
# Add add'l lengths and names for Bluegill and Largemouth Bass from a data.frame
addls <- data.frame(species=c("Bluegill","Largemouth Bass","Largemouth Bass"),
                    lens=c(175,254,356))
df$psd4 <- psdAdd(tl~species,data=df,addSpec=addls$species,addLens=addls$lens)
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
head(df)
#>    species  tl    wt      PSD     PSD1 PSD2 PSD3 psd4
#> 1 Bluegill  42 -12.5 substock substock    0    0    0
#> 2 Bluegill  73   4.8 substock substock    0    0    0
#> 3 Bluegill 152  86.6  quality  quality  150  150  150
#> 4 Bluegill 184 134.4  quality  quality  150  175  175
#> 5 Bluegill 167  91.9  quality  quality  150  150  150
#> 6 Bluegill  94  38.3    stock    stock   80   80   80

## All of the above but using dplyr
if (require(dplyr)) {
  df <- df %>%
    mutate(PSD1A=psdAdd(tl,species)) %>%
    mutate(PSD2A=psdAdd(tl,species,use.names=FALSE)) %>%
    mutate(psd3a=psdAdd(tl,species,addSpec="Bluegill",addLens=175)) %>%
    mutate(psd4a=psdAdd(tl,species,addSpec=addls$species,addLens=addls$lens))
}
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
#> No known Gabelhouse (PSD) lengths for: Bluefin Tuna
df
#>            species   tl       wt       PSD      PSD1 PSD2 PSD3 psd4     PSD1A
#> 1         Bluegill   42    -12.5  substock  substock    0    0    0  substock
#> 2         Bluegill   73      4.8  substock  substock    0    0    0  substock
#> 3         Bluegill  152     86.6   quality   quality  150  150  150   quality
#> 4         Bluegill  184    134.4   quality   quality  150  175  175   quality
#> 5         Bluegill  167     91.9   quality   quality  150  150  150   quality
#> 6         Bluegill   94     38.3     stock     stock   80   80   80     stock
#> 7         Bluegill  138     62.5     stock     stock   80   80   80     stock
#> 8         Bluegill  169     93.9   quality   quality  150  150  150   quality
#> 9         Bluegill   86     20.7     stock     stock   80   80   80     stock
#> 10        Bluegill  157     79.1   quality   quality  150  150  150   quality
#> 11        Bluegill  123     36.2     stock     stock   80   80   80     stock
#> 12        Bluegill  210    207.8 preferred preferred  200  200  200 preferred
#> 13        Bluegill  150     77.2   quality   quality  150  150  150   quality
#> 14        Bluegill  124     27.6     stock     stock   80   80   80     stock
#> 15        Bluegill  116     31.1     stock     stock   80   80   80     stock
#> 16        Bluegill  139     61.9     stock     stock   80   80   80     stock
#> 17        Bluegill  160     72.5   quality   quality  150  150  150   quality
#> 18        Bluegill  120     40.1     stock     stock   80   80   80     stock
#> 19        Bluegill  155     90.6   quality   quality  150  150  150   quality
#> 20        Bluegill  238    301.6 preferred preferred  200  200  200 preferred
#> 21        Bluegill  153    103.1   quality   quality  150  150  150   quality
#> 22        Bluegill   32    -11.4  substock  substock    0    0    0  substock
#> 23        Bluegill  151     66.8   quality   quality  150  150  150   quality
#> 24        Bluegill  108     14.0     stock     stock   80   80   80     stock
#> 25        Bluegill  142     58.9     stock     stock   80   80   80     stock
#> 26        Bluegill  124     31.3     stock     stock   80   80   80     stock
#> 27        Bluegill  109     23.3     stock     stock   80   80   80     stock
#> 28        Bluegill   94     27.1     stock     stock   80   80   80     stock
#> 29        Bluegill  196    162.8   quality   quality  150  175  175   quality
#> 30        Bluegill  128     28.6     stock     stock   80   80   80     stock
#> 31 Largemouth Bass  384    807.1 preferred preferred  380  380  380 preferred
#> 32 Largemouth Bass  383    840.2 preferred preferred  380  380  380 preferred
#> 33 Largemouth Bass  346    527.1   quality   quality  300  300  300   quality
#> 34 Largemouth Bass  437   1337.9 preferred preferred  380  380  380 preferred
#> 35 Largemouth Bass  357    728.2   quality   quality  300  300  356   quality
#> 36 Largemouth Bass  425   1196.0 preferred preferred  380  380  380 preferred
#> 37 Largemouth Bass  353    702.1   quality   quality  300  300  300   quality
#> 38 Largemouth Bass  340    551.1   quality   quality  300  300  300   quality
#> 39 Largemouth Bass  358    629.4   quality   quality  300  300  356   quality
#> 40 Largemouth Bass  257    181.2     stock     stock  200  200  254     stock
#> 41 Largemouth Bass  327    454.1   quality   quality  300  300  300   quality
#> 42 Largemouth Bass  465   1573.9 preferred preferred  380  380  380 preferred
#> 43 Largemouth Bass  454   1481.4 preferred preferred  380  380  380 preferred
#> 44 Largemouth Bass  389    859.2 preferred preferred  380  380  380 preferred
#> 45 Largemouth Bass  336    465.6   quality   quality  300  300  300   quality
#> 46 Largemouth Bass  289    393.5     stock     stock  200  200  254     stock
#> 47 Largemouth Bass  288    305.1     stock     stock  200  200  254     stock
#> 48 Largemouth Bass  401   1007.1 preferred preferred  380  380  380 preferred
#> 49 Largemouth Bass  321    509.4   quality   quality  300  300  300   quality
#> 50 Largemouth Bass  340    581.2   quality   quality  300  300  300   quality
#> 51 Largemouth Bass  308    406.4   quality   quality  300  300  300   quality
#> 52 Largemouth Bass  250    179.9     stock     stock  200  200  200     stock
#> 53 Largemouth Bass  380    793.7 preferred preferred  380  380  380 preferred
#> 54 Largemouth Bass  394    938.8 preferred preferred  380  380  380 preferred
#> 55 Largemouth Bass  369    755.6   quality   quality  300  300  356   quality
#> 56 Largemouth Bass  344    692.6   quality   quality  300  300  300   quality
#> 57 Largemouth Bass  273    208.7     stock     stock  200  200  254     stock
#> 58 Largemouth Bass  386    901.4 preferred preferred  380  380  380 preferred
#> 59 Largemouth Bass  296    309.7     stock     stock  200  200  254     stock
#> 60 Largemouth Bass  280    380.1     stock     stock  200  200  254     stock
#> 61    Bluefin Tuna 1904  58963.4      <NA>      <NA>   NA   NA   NA      <NA>
#> 62    Bluefin Tuna 1634  56007.5      <NA>      <NA>   NA   NA   NA      <NA>
#> 63    Bluefin Tuna 1938  64262.2      <NA>      <NA>   NA   NA   NA      <NA>
#> 64    Bluefin Tuna 2403 131188.3      <NA>      <NA>   NA   NA   NA      <NA>
#> 65    Bluefin Tuna 2026  70580.7      <NA>      <NA>   NA   NA   NA      <NA>
#> 66    Bluefin Tuna 2294 116401.4      <NA>      <NA>   NA   NA   NA      <NA>
#> 67    Bluefin Tuna 2116  90855.2      <NA>      <NA>   NA   NA   NA      <NA>
#> 68    Bluefin Tuna  991  15764.4      <NA>      <NA>   NA   NA   NA      <NA>
#> 69    Bluefin Tuna 1940  61447.3      <NA>      <NA>   NA   NA   NA      <NA>
#> 70    Bluefin Tuna 2129  89686.6      <NA>      <NA>   NA   NA   NA      <NA>
#> 71    Bluefin Tuna 1743  55336.4      <NA>      <NA>   NA   NA   NA      <NA>
#> 72    Bluefin Tuna 1773  54506.3      <NA>      <NA>   NA   NA   NA      <NA>
#> 73    Bluefin Tuna 1673  46411.8      <NA>      <NA>   NA   NA   NA      <NA>
#> 74    Bluefin Tuna 1864  56358.0      <NA>      <NA>   NA   NA   NA      <NA>
#> 75    Bluefin Tuna 1945  76569.3      <NA>      <NA>   NA   NA   NA      <NA>
#> 76    Bluefin Tuna 1623  42905.7      <NA>      <NA>   NA   NA   NA      <NA>
#> 77    Bluefin Tuna 1923  60858.8      <NA>      <NA>   NA   NA   NA      <NA>
#> 78    Bluefin Tuna 1831  69531.2      <NA>      <NA>   NA   NA   NA      <NA>
#> 79    Bluefin Tuna 2658 175368.5      <NA>      <NA>   NA   NA   NA      <NA>
#> 80    Bluefin Tuna 1788  62130.2      <NA>      <NA>   NA   NA   NA      <NA>
#> 81    Bluefin Tuna 2084  91052.6      <NA>      <NA>   NA   NA   NA      <NA>
#> 82    Bluefin Tuna 1770  58165.3      <NA>      <NA>   NA   NA   NA      <NA>
#> 83    Bluefin Tuna 2085  88694.5      <NA>      <NA>   NA   NA   NA      <NA>
#> 84    Bluefin Tuna 1521  32761.0      <NA>      <NA>   NA   NA   NA      <NA>
#> 85    Bluefin Tuna 2337 126556.8      <NA>      <NA>   NA   NA   NA      <NA>
#> 86    Bluefin Tuna 1716  48947.6      <NA>      <NA>   NA   NA   NA      <NA>
#> 87    Bluefin Tuna 1448  26363.9      <NA>      <NA>   NA   NA   NA      <NA>
#> 88    Bluefin Tuna 2356 119531.1      <NA>      <NA>   NA   NA   NA      <NA>
#> 89    Bluefin Tuna 1481  34928.6      <NA>      <NA>   NA   NA   NA      <NA>
#> 90    Bluefin Tuna 2007  64746.8      <NA>      <NA>   NA   NA   NA      <NA>
#>    PSD2A psd3a psd4a
#> 1      0     0     0
#> 2      0     0     0
#> 3    150   150   150
#> 4    150   175   175
#> 5    150   150   150
#> 6     80    80    80
#> 7     80    80    80
#> 8    150   150   150
#> 9     80    80    80
#> 10   150   150   150
#> 11    80    80    80
#> 12   200   200   200
#> 13   150   150   150
#> 14    80    80    80
#> 15    80    80    80
#> 16    80    80    80
#> 17   150   150   150
#> 18    80    80    80
#> 19   150   150   150
#> 20   200   200   200
#> 21   150   150   150
#> 22     0     0     0
#> 23   150   150   150
#> 24    80    80    80
#> 25    80    80    80
#> 26    80    80    80
#> 27    80    80    80
#> 28    80    80    80
#> 29   150   175   175
#> 30    80    80    80
#> 31   380   380   380
#> 32   380   380   380
#> 33   300   300   300
#> 34   380   380   380
#> 35   300   300   356
#> 36   380   380   380
#> 37   300   300   300
#> 38   300   300   300
#> 39   300   300   356
#> 40   200   200   254
#> 41   300   300   300
#> 42   380   380   380
#> 43   380   380   380
#> 44   380   380   380
#> 45   300   300   300
#> 46   200   200   254
#> 47   200   200   254
#> 48   380   380   380
#> 49   300   300   300
#> 50   300   300   300
#> 51   300   300   300
#> 52   200   200   200
#> 53   380   380   380
#> 54   380   380   380
#> 55   300   300   356
#> 56   300   300   300
#> 57   200   200   254
#> 58   380   380   380
#> 59   200   200   254
#> 60   200   200   254
#> 61    NA    NA    NA
#> 62    NA    NA    NA
#> 63    NA    NA    NA
#> 64    NA    NA    NA
#> 65    NA    NA    NA
#> 66    NA    NA    NA
#> 67    NA    NA    NA
#> 68    NA    NA    NA
#> 69    NA    NA    NA
#> 70    NA    NA    NA
#> 71    NA    NA    NA
#> 72    NA    NA    NA
#> 73    NA    NA    NA
#> 74    NA    NA    NA
#> 75    NA    NA    NA
#> 76    NA    NA    NA
#> 77    NA    NA    NA
#> 78    NA    NA    NA
#> 79    NA    NA    NA
#> 80    NA    NA    NA
#> 81    NA    NA    NA
#> 82    NA    NA    NA
#> 83    NA    NA    NA
#> 84    NA    NA    NA
#> 85    NA    NA    NA
#> 86    NA    NA    NA
#> 87    NA    NA    NA
#> 88    NA    NA    NA
#> 89    NA    NA    NA
#> 90    NA    NA    NA