
Package ‘gsengine’

November 30, 2025

Type Package

Title Genstat Engine for knitr

Version 2.3-1

Description Provides a custom knitr engine to process Genstat code via socket connection.

Depends R (>= 3.5.0)

Imports base64enc, knitr, jsonlite, rvest, xml2

License GPL-3

Encoding UTF-8

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.3

NeedsCompilation no

Author Yuxiao Wang [aut],
Simon Urbanek [aut],
James Curran [aut, cre]

Maintainer James Curran <j.curran@auckland.ac.nz>

Contents

extractTablesToEnv . 2
fixTableCols . 2
gs.engine . 3
gsio . 3
processOutput . 5
stripGenVerbatim . 5

Index 6

1

2 fixTableCols

extractTablesToEnv Parse HTML tables and assign as data frames/tibbles into the knit env

Description

Supports three modes: - mode="auto": assign list to a name like gs_tables_<chunklabel> - mode="single_or_list":
assign a single table (if n=1) or a list to a given name - mode="vector_map": map first k tables to k
names

Usage

extractTablesToEnv(htmlBlock, saveConfig)

Arguments

htmlBlock Character vector of HTML (from Genstat output)

saveConfig List produced by normalize_save_tables_option()

Details

Requires: xml2, rvest

fixTableCols Inject per-table nth-of-type CSS from <col> alignment/widths, then
remove <col>s

Description

Inject per-table nth-of-type CSS from <col> alignment/widths, then remove <col>s

Usage

fixTableCols(output, io)

Arguments

output Character vector (HTML fragments) to preprocess

io Environment which contains, among other things, a table counter which is nec-
essary to give the tables unique ids.

Value

A single character string of cleaned HTML

gs.engine 3

gs.engine Genstat Socket Engine for knitr

Description

This function creates a custom knitr engine for executing Genstat code by connecting to a Genstat
server over a socket. The engine sends Genstat code, receives output, and renders it in R Markdown
documents with support for formatted tables, warnings, and embedded plots.

Usage

gs.engine(
host = Sys.getenv("GENSTAT_HOST", "localhost"),
port = as.integer(Sys.getenv("GENSTAT_PORT", "8085")),
timeout = 1L

)

Arguments

host A character string specifying the host name or IP address of the Genstat server.
Defaults to ‘"localhost"‘ or the environment variable ‘GENSTAT_HOST‘.

port An integer specifying the port number to connect to on the Genstat server. De-
faults to ‘8085‘ or the environment variable ‘GENSTAT_PORT‘.

timeout numeric, number of seconds to wait if no response is coming.

Value

A function that can be registered as a knitr engine (e.g., via ‘knitr::knit_engines$set(gs = gs.engine())‘)

Examples

Not run:
knitr::knit_engines$set(gs = gs.engine())

End(Not run)

gsio Genstat Messenger TCP/IO Communication Protocol Functions

Description

gsio.connect connects to the Messenger server according to the host and port arguments.
Typically you want to call gsio.greeting() on the resulting connection to start the communi-
cation.

gsio.msg sends a message to the Messenger and waits for a response. Any unmatched, named
arguments in . . . will be ignored. As a special case, passing NULL will tell gsio.msg to not send
any message, but still process any pending replies (useful with wait=FALSE to check for such
condition).

4 gsio

gsio.greeting receives a greeting response from the Messenger, i.e., the first response after
connecting.

The close method closes the connection to the GenStat Messenger.

The following functions are low-level and typically not used directly (use gsio.msg instead):
gsio.send sends content to the Messenger, gsio.recv receives a reply from the Messenger.

Usage

gsio.connect(host = "localhost", port = 8085L, timeout = 1)

gsio.send(io, ...)

gsio.recv(io, wait = TRUE)

gsio.msg(io, ..., all = TRUE, wait = TRUE)

S3 method for class 'gsio'
close(con, ...)

gsio.greeting(io)

Arguments

host string, name (or IP address) or the host to connect to

port integer, TCP port to connect to

timeout real, time (in seconds, can be fractional) for communication attempts.

io "gsio" object as obtained from gsio.connect()

... content to send, will be pasted together as string without a separator.

wait logical scalar, if TRUE then this function does not return until a reply is received.
Otherwise will return NULL if no reply was recevied. Note that if a response
header is recevied, the function will still wait until it can read the entire response
in order to prevent inconsistent state of the connection.

all logical scalar, if TRUE then all replies until "STAT" is received with be col-
lected and returned at the end in a list. Note that if "STAT" is the only reply
when the list will be empty. If FALSE then only the first reply will be returned.

con "gsio" object as obtained from gsio.connect()

Details

A typical communication with the Messenger starts with gsio.connect(), followed by gsio.greeting(),
one or more calls to gsio.msg() and final close(). In most cases the messages to sent to the
Messenger are strings representing code to evaluate in GenStat.

Since Messenger 1.1 there are special commands that will be interpreted by the Messenger instead
of passing them to GenStat. Those messages start with "#:". Should you need to send a string
to GenStat that also starts with "#:" (uncommon) then precede the string with "#:" to tell the
Messenger that it should be passed through, so "#:#:FOO" will result in "#:FOO" being sent to
GenStat.

Which special commands are supported depends on the Messenger version. As of 1.1 "#:SET_OUTPUT_TYPE:HTML"
will set the output type (valid values are TEXT, RTF and HTML) and restart GenStat with the new
setting. "#:RESTART" will restart the GetStat server without changing the current output settings.

processOutput 5

NOTE: In both cases the GetStat server currently sends two STAT responses, so it is prudent to call
gsio.recv(c, wait=FALSE) immediately after receiving the message response to clear the
extra STAT response.

Value

gsio.connect: an object of the class "gsio" which can be used for subsequent communica-
tion.

gsio.send: undefined (currently NULL)

gsio.recv: Either NULL (if wait=FALSE and no reply is present) or a a reply (see gsio.msg
return description below for the definition of a reply).

gsio.msg: If all=TRUE then a list of replies, otherwise a single reply. A reply is a list with the
components "cmd" (command), "type" (content type) and "content". Most common com-
mands are "OUT" (text output), "GRAPH" (plot output) and "STAT" (end of evaluation, "status"
change). Common types are "TEXT", "RTF" and "HTML" for text output types, "PNG" for graph
output and "NULL" if the reply has no contents.

gsio.greeting: Greeting reply contents. Messenger verisons 1.1 and higher will reply with a
list at least with the components version and outputType. The latter can have values "TEXT",
"HTML" and "RTF". Older versions will only return a string.

See Also

link{gsio.msg()}

processOutput implement this function to handle the GS output

Description

implement this function to handle the GS output

Usage

processOutput(msg, io, saveConfig = list(enabled = FALSE))

stripGenVerbatim Function to strip stuff that looks like this:<PRE></PRE> from the out-
put.

Description

Function to strip stuff that looks like this:<PRE></PRE>
from the output.

Usage

stripGenVerbatim(output)

Index

close.gsio (gsio), 3

extractTablesToEnv, 2

fixTableCols, 2

gs.engine, 3
gsio, 3
gsio.connect(), 4

processOutput, 5

stripGenVerbatim, 5

6

	extractTablesToEnv
	fixTableCols
	gs.engine
	gsio
	processOutput
	stripGenVerbatim
	Index

