This function will return all permutations of a multiset

allPerm(mcObj)

Arguments

mcObj

an object of class mc - usually generated by initMC

Value

A matrix with each row being a different permutation of the multiset

Details

This function will return all permutations of a multiset. It makes no check to see if this is a sensible thing to do. Users are advised to check how many permutations are possible using the multinom function in this package.

Note

This function does not warn the user that the requested set of permutations may be very large. In addition, all working is handled entirely in memory, and so this may cause it to crash if the request is execeptionally large.

See also

Author

James M. Curran

Examples


## a small numeric example with 6 permuations
x = c(1,1,2,2)
m = initMC(x)
allPerm(m)
#>      [,1] [,2] [,3] [,4]
#> [1,]    2    2    1    1
#> [2,]    1    2    2    1
#> [3,]    2    1    2    1
#> [4,]    1    2    1    2
#> [5,]    1    1    2    2
#> [6,]    2    1    1    2

## a large character example - 60 possibilities
x = rep(letters[1:3], 3:1)
multinom(x) ## calculate the number of permutations
#> [1] 60
m = initMC(x)
allPerm(m)
#>       [,1] [,2] [,3] [,4] [,5] [,6]
#>  [1,] "c"  "b"  "b"  "a"  "a"  "a" 
#>  [2,] "a"  "c"  "b"  "b"  "a"  "a" 
#>  [3,] "c"  "a"  "b"  "b"  "a"  "a" 
#>  [4,] "b"  "c"  "a"  "b"  "a"  "a" 
#>  [5,] "a"  "b"  "c"  "b"  "a"  "a" 
#>  [6,] "b"  "a"  "c"  "b"  "a"  "a" 
#>  [7,] "c"  "b"  "a"  "b"  "a"  "a" 
#>  [8,] "a"  "c"  "b"  "a"  "b"  "a" 
#>  [9,] "c"  "a"  "b"  "a"  "b"  "a" 
#> [10,] "a"  "c"  "a"  "b"  "b"  "a" 
#> [11,] "a"  "a"  "c"  "b"  "b"  "a" 
#> [12,] "c"  "a"  "a"  "b"  "b"  "a" 
#> [13,] "b"  "c"  "a"  "a"  "b"  "a" 
#> [14,] "a"  "b"  "c"  "a"  "b"  "a" 
#> [15,] "b"  "a"  "c"  "a"  "b"  "a" 
#> [16,] "a"  "b"  "a"  "c"  "b"  "a" 
#> [17,] "a"  "a"  "b"  "c"  "b"  "a" 
#> [18,] "b"  "a"  "a"  "c"  "b"  "a" 
#> [19,] "c"  "b"  "a"  "a"  "b"  "a" 
#> [20,] "a"  "c"  "b"  "a"  "a"  "b" 
#> [21,] "c"  "a"  "b"  "a"  "a"  "b" 
#> [22,] "a"  "c"  "a"  "b"  "a"  "b" 
#> [23,] "a"  "a"  "c"  "b"  "a"  "b" 
#> [24,] "c"  "a"  "a"  "b"  "a"  "b" 
#> [25,] "a"  "c"  "a"  "a"  "b"  "b" 
#> [26,] "a"  "a"  "c"  "a"  "b"  "b" 
#> [27,] "a"  "a"  "a"  "c"  "b"  "b" 
#> [28,] "c"  "a"  "a"  "a"  "b"  "b" 
#> [29,] "b"  "c"  "a"  "a"  "a"  "b" 
#> [30,] "a"  "b"  "c"  "a"  "a"  "b" 
#> [31,] "b"  "a"  "c"  "a"  "a"  "b" 
#> [32,] "a"  "b"  "a"  "c"  "a"  "b" 
#> [33,] "a"  "a"  "b"  "c"  "a"  "b" 
#> [34,] "b"  "a"  "a"  "c"  "a"  "b" 
#> [35,] "a"  "b"  "a"  "a"  "c"  "b" 
#> [36,] "a"  "a"  "b"  "a"  "c"  "b" 
#> [37,] "a"  "a"  "a"  "b"  "c"  "b" 
#> [38,] "b"  "a"  "a"  "a"  "c"  "b" 
#> [39,] "c"  "b"  "a"  "a"  "a"  "b" 
#> [40,] "b"  "c"  "b"  "a"  "a"  "a" 
#> [41,] "b"  "b"  "c"  "a"  "a"  "a" 
#> [42,] "a"  "b"  "b"  "c"  "a"  "a" 
#> [43,] "b"  "a"  "b"  "c"  "a"  "a" 
#> [44,] "b"  "b"  "a"  "c"  "a"  "a" 
#> [45,] "a"  "b"  "b"  "a"  "c"  "a" 
#> [46,] "b"  "a"  "b"  "a"  "c"  "a" 
#> [47,] "a"  "b"  "a"  "b"  "c"  "a" 
#> [48,] "a"  "a"  "b"  "b"  "c"  "a" 
#> [49,] "b"  "a"  "a"  "b"  "c"  "a" 
#> [50,] "b"  "b"  "a"  "a"  "c"  "a" 
#> [51,] "a"  "b"  "b"  "a"  "a"  "c" 
#> [52,] "b"  "a"  "b"  "a"  "a"  "c" 
#> [53,] "a"  "b"  "a"  "b"  "a"  "c" 
#> [54,] "a"  "a"  "b"  "b"  "a"  "c" 
#> [55,] "b"  "a"  "a"  "b"  "a"  "c" 
#> [56,] "a"  "b"  "a"  "a"  "b"  "c" 
#> [57,] "a"  "a"  "b"  "a"  "b"  "c" 
#> [58,] "a"  "a"  "a"  "b"  "b"  "c" 
#> [59,] "b"  "a"  "a"  "a"  "b"  "c" 
#> [60,] "b"  "b"  "a"  "a"  "a"  "c"