allPerm.Rd
This function will return all permutations of a multiset
allPerm(mcObj)
an object of class mc - usually generated by initMC
A matrix with each row being a different permutation of the multiset
This function will return all permutations of a multiset. It makes no check
to see if this is a sensible thing to do. Users are advised to check how
many permutations are possible using the multinom
function in this
package.
This function does not warn the user that the requested set of permutations may be very large. In addition, all working is handled entirely in memory, and so this may cause it to crash if the request is execeptionally large.
## a small numeric example with 6 permuations
x = c(1,1,2,2)
m = initMC(x)
allPerm(m)
#> [,1] [,2] [,3] [,4]
#> [1,] 2 2 1 1
#> [2,] 1 2 2 1
#> [3,] 2 1 2 1
#> [4,] 1 2 1 2
#> [5,] 1 1 2 2
#> [6,] 2 1 1 2
## a large character example - 60 possibilities
x = rep(letters[1:3], 3:1)
multinom(x) ## calculate the number of permutations
#> [1] 60
m = initMC(x)
allPerm(m)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] "c" "b" "b" "a" "a" "a"
#> [2,] "a" "c" "b" "b" "a" "a"
#> [3,] "c" "a" "b" "b" "a" "a"
#> [4,] "b" "c" "a" "b" "a" "a"
#> [5,] "a" "b" "c" "b" "a" "a"
#> [6,] "b" "a" "c" "b" "a" "a"
#> [7,] "c" "b" "a" "b" "a" "a"
#> [8,] "a" "c" "b" "a" "b" "a"
#> [9,] "c" "a" "b" "a" "b" "a"
#> [10,] "a" "c" "a" "b" "b" "a"
#> [11,] "a" "a" "c" "b" "b" "a"
#> [12,] "c" "a" "a" "b" "b" "a"
#> [13,] "b" "c" "a" "a" "b" "a"
#> [14,] "a" "b" "c" "a" "b" "a"
#> [15,] "b" "a" "c" "a" "b" "a"
#> [16,] "a" "b" "a" "c" "b" "a"
#> [17,] "a" "a" "b" "c" "b" "a"
#> [18,] "b" "a" "a" "c" "b" "a"
#> [19,] "c" "b" "a" "a" "b" "a"
#> [20,] "a" "c" "b" "a" "a" "b"
#> [21,] "c" "a" "b" "a" "a" "b"
#> [22,] "a" "c" "a" "b" "a" "b"
#> [23,] "a" "a" "c" "b" "a" "b"
#> [24,] "c" "a" "a" "b" "a" "b"
#> [25,] "a" "c" "a" "a" "b" "b"
#> [26,] "a" "a" "c" "a" "b" "b"
#> [27,] "a" "a" "a" "c" "b" "b"
#> [28,] "c" "a" "a" "a" "b" "b"
#> [29,] "b" "c" "a" "a" "a" "b"
#> [30,] "a" "b" "c" "a" "a" "b"
#> [31,] "b" "a" "c" "a" "a" "b"
#> [32,] "a" "b" "a" "c" "a" "b"
#> [33,] "a" "a" "b" "c" "a" "b"
#> [34,] "b" "a" "a" "c" "a" "b"
#> [35,] "a" "b" "a" "a" "c" "b"
#> [36,] "a" "a" "b" "a" "c" "b"
#> [37,] "a" "a" "a" "b" "c" "b"
#> [38,] "b" "a" "a" "a" "c" "b"
#> [39,] "c" "b" "a" "a" "a" "b"
#> [40,] "b" "c" "b" "a" "a" "a"
#> [41,] "b" "b" "c" "a" "a" "a"
#> [42,] "a" "b" "b" "c" "a" "a"
#> [43,] "b" "a" "b" "c" "a" "a"
#> [44,] "b" "b" "a" "c" "a" "a"
#> [45,] "a" "b" "b" "a" "c" "a"
#> [46,] "b" "a" "b" "a" "c" "a"
#> [47,] "a" "b" "a" "b" "c" "a"
#> [48,] "a" "a" "b" "b" "c" "a"
#> [49,] "b" "a" "a" "b" "c" "a"
#> [50,] "b" "b" "a" "a" "c" "a"
#> [51,] "a" "b" "b" "a" "a" "c"
#> [52,] "b" "a" "b" "a" "a" "c"
#> [53,] "a" "b" "a" "b" "a" "c"
#> [54,] "a" "a" "b" "b" "a" "c"
#> [55,] "b" "a" "a" "b" "a" "c"
#> [56,] "a" "b" "a" "a" "b" "c"
#> [57,] "a" "a" "b" "a" "b" "c"
#> [58,] "a" "a" "a" "b" "b" "c"
#> [59,] "b" "a" "a" "a" "b" "c"
#> [60,] "b" "b" "a" "a" "a" "c"