
Package ‘knitr’
March 9, 2017

Type Package

Title A General-Purpose Package for Dynamic Report Generation in R

Version 1.15.14

Date 2016-11-22

Maintainer Yihui Xie <xie@yihui.name>

Description Provides a general-purpose tool for dynamic report generation in R
using Literate Programming techniques.

Depends R (>= 3.1.0)

Imports evaluate (>= 0.10),
digest,
highr,
markdown,
stringr (>= 0.6),
yaml,
methods,
tools

Suggests formatR,
testit,
rgl (>= 0.95.1201),
codetools,
rmarkdown,
htmlwidgets (>= 0.7),
webshot,
tikzDevice (>= 0.10),
png,
jpeg,
XML,
RCurl,
DBI (>= 0.4-1),
tibble

License GPL

URL http://yihui.name/knitr/

1

http://yihui.name/knitr/

2 R topics documented:

BugReports https://github.com/yihui/knitr/issues

VignetteBuilder knitr

SystemRequirements Package vignettes based on R Markdown v2 require Pandoc
(http://pandoc.org). The function rst2pdf() and vignettes based on
reStructuredText require rst2pdf (https://github.com/rst2pdf/rst2pdf).

Collate 'block.R'
'cache.R'
'utils.R'
'citation.R'
'hooks-html.R'
'plot.R'
'defaults.R'
'concordance.R'
'engine.R'
'highlight.R'
'themes.R'
'header.R'
'hooks-asciidoc.R'
'hooks-chunk.R'
'hooks-extra.R'
'hooks-latex.R'
'hooks-md.R'
'hooks-rst.R'
'hooks-textile.R'
'hooks.R'
'output.R'
'package.R'
'pandoc.R'
'params.R'
'parser.R'
'pattern.R'
'rocco.R'
'spin.R'
'table.R'
'template.R'
'utils-base64.R'
'utils-conversion.R'
'utils-rd2html.R'
'utils-sweave.R'
'utils-upload.R'
'utils-vignettes.R'
'zzz.R'

RoxygenNote 6.0.1

R topics documented:
knitr-package . 4

https://github.com/yihui/knitr/issues

R topics documented: 3

all_labels . 5
all_patterns . 6
asis_output . 6
clean_cache . 7
combine_words . 8
current_input . 9
dep_auto . 9
dep_prev . 10
engine_output . 11
extract_raw_output . 11
fig_chunk . 12
fig_path . 13
hook_ffmpeg_html . 14
hook_movecode . 15
hook_pdfcrop . 16
hook_plot_html . 17
image_uri . 19
imgur_upload . 19
include_graphics . 21
include_url . 22
inline_expr . 22
kable . 23
knit . 25
knit2html . 27
knit2pdf . 28
knit2wp . 30
knit_child . 31
knit_engines . 32
knit_exit . 33
knit_expand . 34
knit_filter . 35
knit_global . 36
knit_hooks . 36
knit_meta . 37
knit_params . 37
knit_params_yaml . 39
knit_patterns . 40
knit_print . 41
knit_rd . 42
knit_theme . 43
knit_watch . 44
load_cache . 45
opts_chunk . 46
opts_hooks . 48
opts_knit . 48
opts_template . 50
pandoc . 50
pat_rnw . 52

4 knitr-package

plot_crop . 53
rand_seed . 53
read_chunk . 54
read_rforge . 56
render_html . 56
rocco . 58
rst2pdf . 59
set_alias . 60
set_header . 60
set_parent . 61
spin . 62
spin_child . 64
stitch . 65
Sweave2knitr . 66
vignette_engines . 67
wrap_rmd . 68
write_bib . 69

Index 71

knitr-package A general-purpose tool for dynamic report generation in R

Description

This is an alternative tool to Sweave with a more flexible design and new features like caching and
finer control of graphics. It is not limited to LaTeX and is ready to be customized to process other
file formats. See the package website in the references for more information and examples.

Note

The pronunciation of knitr is similar to neater (neater than what?) or you can think of knitter (but
it is single t). The name comes from knit + R (while Sweave = S + weave).

Author(s)

Yihui Xie <http://yihui.name>

References

Full documentation and demos: http://yihui.name/knitr/; FAQ’s: http://bit.ly/knitr-faq

See Also

The core function in this package: knit. If you are an Sweave user, see Sweave2knitr on how to
convert Sweave files to knitr.

http://yihui.name
http://yihui.name/knitr/
http://bit.ly/knitr-faq

all_labels 5

all_labels Get all chunk labels in a document

Description

The function all_labels() returns all chunk labels as a character vector. Optionally, you can
specify a series of conditions to filter the labels. The function ‘all_rcpp_labels()‘ is a wrapper
function for all_labels(engine == 'Rcpp').

Usage

all_labels(...)

all_rcpp_labels(...)

Arguments

... a series of R expressions, each of which should return TRUE or FALSE; the ex-
pressions are evaluated using the local chunk options of each code chunk as the
environment

Details

For example, suppose the condition expression is engine == 'Rcpp', the object engine is the
local chunk option engine; if an expression fails to be evaluated (e.g. when a certain object does
not exist), FALSE is returned and the label for this chunk will be filtered out.

Value

A character vector.

Note

Empty code chunks are always ignored, including those chunks that are empty originally in the
document but filled with code using chunk options such as ref.label or code.

Examples

the examples below are meaningless unless you put them in a knitr document
all_labels()
all_labels(engine == "Rcpp")
all_labels(echo == FALSE && results != "hide")
or separate the two conditions
all_labels(echo == FALSE, results != "hide")

6 asis_output

all_patterns All built-in patterns

Description

This object is a named list of all built-in patterns.

Usage

all_patterns

Format

An object of class list of length 8.

References

Usage: http://yihui.name/knitr/patterns

See Also

knit_patterns

Examples

all_patterns$rnw
all_patterns$html

str(all_patterns)

asis_output Mark an R object with a special class

Description

This is a convenience function that assigns the input object a class named knit_asis, so that knitr
will treat it as is (the effect is the same as the chunk option results = 'asis') when it is written
to the output.

Usage

asis_output(x, meta = NULL, cacheable = NA)

http://yihui.name/knitr/patterns

clean_cache 7

Arguments

x an R object (typically a character string, or can be converted to a character string
via as.character())

meta additional metadata of the object to be printed (the metadata will be collected
when the object is printed, and accessible via knit_meta())

cacheable a logical value indicating if this object is cacheable; if FALSE, knitr will stop
when caching is enabled on code chunks that contain asis_output()

Details

This function is normally used in a custom S3 method based on the printing function knit_print().

For the cacheable argument, you need to be careful when printing the object involves non-trivial
side effects, in which case it is strongly recommended to use cacheable = FALSE to instruct
knitr that this object should not be cached using the chunk option cache = TRUE, otherwise the
side effects will be lost the next time the chunk is knitted. For example, printing a shiny input
element or an HTML widget in an R Markdown document may involve registering metadata about
some JavaScript libraries or stylesheets, and the metadata may be lost if we cache the code chunk,
because the code evaluation will be skipped the next time. This particular issue has been solved in
knitr after v1.13 (the metadata will be saved and loaded automatically when caching is enabled),
but not all metadata can be saved and loaded next time and still works in the new R session.

Note

This function only works in top-level R expressions, and it will not work when it is called inside
another expression, such as a for-loop. See https://github.com/yihui/knitr/issues/1137 for
a discussion.

Examples

see ?knit_print

clean_cache Clean cache files that are probably no longer needed

Description

If you remove or rename some cached code chunks, their original cache files will not be automat-
ically cleaned. You can use this function to identify these possible files, and clean them if you are
sure they are no longer needed.

Usage

clean_cache(clean = FALSE, path = opts_chunk$get("cache.path"))

https://github.com/yihui/knitr/issues/1137

8 combine_words

Arguments

clean whether to remove the files

path the cache path

Note

The identification is not guaranteed to be correct, especially when multiple documents share the
same cache directory. You are recommended to call clean_cache(FALSE) and carefully check the
list of files (if any) before you really delete them (clean_cache(TRUE)).

This function must be called within a code chunk in a source document, since it needs to know all
chunk labels of the current document to determine which labels are no longer present, and delete
cache corresponding to these labels.

combine_words Combine multiple words into a single string

Description

When a value from an inline R expression is a character vector of multiple elements, we may want
to combine them into a phrase like ‘a and b’, or a, b, and c. That is what this a helper function
does.

Usage

combine_words(words, sep = ", ", and = " and ", before = "", after = before)

Arguments

words a character vector

sep the separator to be inserted among words

and a character string to be prepended to the last word

before, after A character string to be added before/after each word

Details

If the length of the input words is smaller than or equal to 1, words is returned. When words is
of length 2, the first word and second word are combined using the and string. When the length is
greater than 2, sep is used to separate all words, and the and string is prepended to the last word.

Value

A character string.

current_input 9

Examples

combine_words("a")
combine_words(c("a", "b"))
combine_words(c("a", "b", "c"))
combine_words(c("a", "b", "c"), sep = " / ", and = "")
combine_words(c("a", "b", "c"), and = "")
combine_words(c("a", "b", "c"), before = "\"", after = "\"")

current_input Query the current input filename

Description

Returns the name of the input file passed to knit().

Usage

current_input(dir = FALSE)

Arguments

dir whether to prepend the current working directory to the file path (i.e. return an
absolute path or a relative path)

Value

A character string, if this function is called inside an input document (otherwise NULL).

dep_auto Build automatic dependencies among chunks

Description

When the chunk option autodep = TRUE, all names of objects created in a chunk will be saved in a
file named ‘__objects’ and all global objects used in a chunk will be saved to ‘__globals’. This
function can analyze object names in these files to automatically build cache dependencies, which
is similar to the effect of the dependson option. It is supposed to be used in the first chunk of a
document and this chunk must not be cached.

Usage

dep_auto(path = opts_chunk$get("cache.path"))

Arguments

path the path to the dependency file

10 dep_prev

Value

NULL. The dependencies are built as a side effect.

Note

Be cautious about path: because this function is used in a chunk, the working directory when the
chunk is evaluated is the directory of the input document in knit, and if that directory differs from
the working directory before calling knit(), you need to adjust the path argument here to make
sure this function can find the cache files ‘__objects’ and ‘__globals’.

References

http://yihui.name/knitr/demo/cache/

See Also

dep_prev

dep_prev Make later chunks depend on previous chunks

Description

This function can be used to build dependencies among chunks so that all later chunks depend on
previous chunks, i.e. whenever the cache of a previous chunk is updated, the cache of all its later
chunks will be updated.

Usage

dep_prev()

Value

NULL; the internal dependency structure is updated as a side effect.

References

http://yihui.name/knitr/demo/cache/

See Also

dep_auto

http://yihui.name/knitr/demo/cache/
http://yihui.name/knitr/demo/cache/

engine_output 11

engine_output An output wrapper for language engine output

Description

If you have designed a language engine, you may call this function in the end to format and return
the text output from your engine.

Usage

engine_output(options, code, out, extra = NULL)

Arguments

options a list of chunk options (usually this is just the object options passed to the
engine function; see knit_engines)

code the source code of the chunk, to which the output hook source is applied, unless
the chunk option echo == FALSE

out the text output from the engine, to which the hook output is applied, unless the
chunk option results == 'hide'

extra any additional text output that you want to include

Value

A character string generated from the source code and output using the appropriate output hooks.

extract_raw_output Mark character strings as raw output that should not be converted

Description

These functions provide a mechanism to protect the character output of R code chunks. The output
is annotated with special markers in raw_output; extract_raw_output() will extract raw output
wrapped in the markers, and replace the raw output with its MD5 digest; restore_raw_output()
will restore the MD5 digest with the original raw output.

Usage

extract_raw_output(text, markers = raw_markers)

restore_raw_output(text, chunks, markers = raw_markers)

raw_output(x, markers = raw_markers, ...)

12 fig_chunk

Arguments

text for extract_raw_output(), the content of the input file (e.g. Markdown); for
restore_raw_output(), the content of the output file (e.g. HTML generated
by Pandoc from Markdown)

markers a character vector of length 2 to be used to wrap x; see knitr:::raw_markers
for the default value

chunks a named character vector returned from extract_raw_output()

x the character vector to be protected

... arguments to be passed to asis_output()

Details

This mechanism is designed primarily for R Markdown pre/post-processors. In an R code chunk,
you generate raw_output() to the Markdown output. In the pre-processor, you can extract_raw_output()
from the Markdown file, store the raw output and MD5 digests, and remove the actual raw output
from Markdown so Pandoc will never see it. In the post-processor, you can read the Pandoc output
(e.g., an HTML or RTF file), and restore the raw output.

Value

For extract_raw_output(), a list of two components value (the text with raw output replaced
by MD5 digests) and chunks (a named character vector, of which the names are MD5 digests and
values are the raw output). For restore_raw_output(), the restored text.

Examples

library(knitr)
out = c("*hello*", raw_output("<special>content</special> *protect* me!"),

"*world*")
pre = extract_raw_output(out)
str(pre)
pre$value = gsub("[*]([^*]+)[*]", "\\1",

pre$value) # think this as Pandoc conversion
pre$value
raw output was protected from the conversion (e.g.
protect was not converted)
restore_raw_output(pre$value, pre$chunks)

fig_chunk Obtain the figure filenames for a chunk

Description

Given a chunk label, the figure file extension, the figure number(s), and the chunk option fig.path,
return the filename(s).

fig_path 13

Usage

fig_chunk(label, ext = "", number, fig.path = opts_chunk$get("fig.path"))

Arguments

label the chunk label

ext the figure file extension, e.g. png or pdf

number the figure number (by default 1)

fig.path the chunk option fig.path

Details

This function can be used in an inline R expression to write out the figure filenames without hard-
coding them. For example, if you created a plot in a code chunk with the label foo and figure path
‘my-figure/’, you are not recommended to use hard-coded figure paths like ‘\includegraphics{my-figure/foo-1.pdf}’
(in ‘.Rnw’ documents) or ‘’ (R Markdown) in your document. In-
stead, you should use ‘\Sexpr{fig_chunk('foo', 'pdf')}’ or ‘`)’.

You can generate plots in a code chunk but not show them inside the code chunk by using the chunk
option fig.show = 'hide'. Then you can use this function if you want to show them elsewhere.

Value

A character vector of filenames.

Examples

library(knitr)
fig_chunk("foo", "png")
fig_chunk("foo", "pdf")
fig_chunk("foo", "svg", 2) # the second plot of the chunk foo
fig_chunk("foo", "png", 1:5) # if the chunk foo produced 5 plots

fig_path Path for figure files

Description

The filename of figure files is the combination of options fig.path and label. This function
returns the path of figures for the current chunk by default.

Usage

fig_path(suffix = "", options = opts_current$get(), number)

14 hook_ffmpeg_html

Arguments

suffix a suffix of the filename; if it is not empty, nor does it contain a dot ., it will be
treated as the filename extension (e.g. png will be used as .png)

options a list of options; by default the options of the current chunk

number the current figure number (by default the internal chunk option fig.cur if avail-
able)

Value

A character vector of the form ‘fig.path-label-i.suffix’.

Note

When there are special characters (not alphanumeric or ‘-’ or ‘_’) in the path, they will be automat-
ically replaced with ‘_’. For example, ‘a b/c.d-’ will be sanitized to ‘a_b/c_d-’. This makes the
filenames safe to LaTeX.

Examples

fig_path(".pdf", options = list(fig.path = "figure/abc-", label = "first-plot"))
fig_path(".png", list(fig.path = "foo-", label = "bar"), 1:10)

hook_ffmpeg_html Hooks to create animations in HTML output

Description

hook_ffmpeg_html() uses FFmpeg to convert images to a video; hook_scianimator() uses the
JavaScript library SciAnimator to create animations; hook_r2swf() uses the R2SWF package.

Usage

hook_ffmpeg_html(x, options)

hook_scianimator(x, options)

hook_r2swf(x, options)

Arguments

x the plot filename (a character string)

options a list of the current chunk options

Details

These hooks are mainly for the package option animation.fun, e.g. you can set opts_knit$set(animation.fun = hook_scianimator).

hook_movecode 15

hook_movecode Some potentially useful document hooks

Description

A document hook is a function to post-process the output document.

Usage

hook_movecode(x)

Arguments

x a character string (the content of the whole document output)

Details

hook_movecode() is a document hook to move code chunks out of LaTeX floating environments
like ‘figure’ and ‘table’ when the chunks were actually written inside the floats. This function
is primarily designed for LyX: we often insert code chunks into floats to generate figures or tables,
but in the final output we do not want the code to float with the environments, so we use regular
expressions to find out the floating environments, extract the code chunks and move them out. To
disable this behavior, use a comment % knitr_do_not_move in the floating environment.

Value

The post-processed document as a character string.

Note

These functions are hackish. Also note hook_movecode() assumes you to use the default output
hooks for LaTeX (not Sweave or listings), and every figure/table environment must have a label.

References

http://yihui.name/knitr/hooks

Examples

Not run:
knit_hooks$set(document = hook_movecode)

End(Not run)
see example 103 at https://github.com/yihui/knitr-examples

http://yihui.name/knitr/hooks

16 hook_pdfcrop

hook_pdfcrop Built-in chunk hooks to extend knitr

Description

Hook functions are called when the corresponding chunk options are not NULL to do additional jobs
beside the R code in chunks. This package provides a few useful hooks, which can also serve as
examples of how to define chunk hooks in knitr.

Usage

hook_pdfcrop(before, options, envir)

hook_optipng(before, options, envir)

hook_pngquant(before, options, envir)

hook_plot_custom(before, options, envir)

hook_purl(before, options, envir)

Arguments

before, options, envir

see references

Details

The function hook_pdfcrop() can use the program pdfcrop to crop the extra white margin when
the plot format is PDF to make better use of the space in the output document, otherwise we of-
ten have to struggle with par to set appropriate margins. Note pdfcrop often comes with a La-
TeX distribution such as MiKTeX or TeXLive, and you may not need to install it separately (use
Sys.which('pdfcrop') to check it; if it not empty, you are able to use it). Similarly, when the
plot format is not PDF (e.g. PNG), the program convert in ImageMagick is used to trim the white
margins (call convert input -trim output).

The function hook_optipng() calls the program optipng to optimize PNG images. Note the
chunk option optipng can be used to provide additional parameters to the program optipng, e.g.
optipng = '-o7'.

The function hook_pngquant() calls the program pngquant to optimize PNG images. Note the
chunk option pngquant can be used to provide additional parameters to the program pngquant,
e.g. pngquant = '--speed=1 --quality=0-50'.

When the plots are not recordable via recordPlot and we save the plots to files manually via other
functions (e.g. rgl plots), we can use the chunk hook hook_plot_custom to help write code for
graphics output into the output document.

The hook hook_purl() can be used to write the code chunks to an R script. It is an alternative
approach to purl, and can be more reliable when the code chunks depend on the execution of them

hook_plot_html 17

(e.g. read_chunk(), or opts_chunk$set(eval = FALSE)). To enable this hook, it is recommended
to associate it with the chunk option purl, i.e. knit_hooks$set(purl = hook_purl). When this
hook is enabled, an R script will be written while the input document is being knit. Currently the
code chunks that are not R code or have the chunk option purl=FALSE are ignored. Please note
when the cache is turned on (the chunk option cache = TRUE), no chunk hooks will be executed,
hence hook_purl() will not work, either. To solve this problem, we need cache = 2 instead of
TRUE (see http://yihui.name/knitr/demo/cache/ for the meaning of cache = 2).

Note

The two hook functions hook_rgl() and hook_webgl() were moved from knitr to the rgl package
(>= v0.95.1247) after knitr v1.10.5, and you can library(rgl) to get them.

References

http://yihui.name/knitr/hooks#chunk_hooks

See Also

rgl.snapshot, rgl.postscript, hook_rgl, hook_webgl

Examples

if (require("rgl") && exists("hook_rgl")) knit_hooks$set(rgl = hook_rgl)
then in code chunks, use the option rgl=TRUE

hook_plot_html Default plot hooks for different output formats

Description

These hook functions define how to mark up graphics output in different output formats.

Usage

hook_plot_html(x, options)

hook_plot_asciidoc(x, options)

hook_plot_tex(x, options)

hook_plot_md(x, options)

hook_plot_rst(x, options)

hook_plot_textile(x, options)

http://yihui.name/knitr/demo/cache/
http://yihui.name/knitr/hooks#chunk_hooks

18 hook_plot_html

Arguments

x the plot filename (a character string)

options a list of the current chunk options

Details

Depending on the options passed over, hook_plot_tex may return the normal ‘\includegraphics{}’
command, or ‘\input{}’ (for tikz files), or ‘\animategraphics{}’ (for animations); it also takes
many other options into consideration to align plots and set figure sizes, etc. Similarly, hook_plot_html,
hook_plot_md and hook_plot_rst return character strings which are HTML, Markdown, reST
code.

In most cases we do not need to call these hooks explicitly, and they were designed to be used
internally. Sometimes we may not be able to record R plots using recordPlot, and we can make
use of these hooks to insert graphics output in the output document; see hook_plot_custom for
details.

Value

A character string (code with plot filenames wrapped)

References

http://yihui.name/knitr/hooks

See Also

hook_plot_custom

Examples

this is what happens for a chunk like this

<<foo-bar-plot, dev='pdf', fig.align='right'>>=
hook_plot_tex("foo-bar-plot.pdf", opts_chunk$merge(list(fig.align = "right")))

<<bar, dev='tikz'>>=
hook_plot_tex("bar.tikz", opts_chunk$merge(list(dev = "tikz")))

<<foo, dev='pdf', fig.show='animate', interval=.1>>=

5 plots are generated in this chunk
hook_plot_tex("foo5.pdf", opts_chunk$merge(list(fig.show = "animate", interval = 0.1,

fig.cur = 5, fig.num = 5)))

http://yihui.name/knitr/hooks

image_uri 19

image_uri Encode an image file to a data URI

Description

This function takes an image file and uses the markdown package to encode it as a base64 string,
which can be used in the img tag in HTML.

Usage

image_uri(f)

Arguments

f the path to the image file

Value

a character string (the data URI)

Author(s)

Wush Wu and Yihui Xie

References

http://en.wikipedia.org/wiki/Data_URI_scheme

Examples

uri = image_uri(file.path(R.home("doc"), "html", "logo.jpg"))
cat(sprintf("", uri), file = "logo.html")
if (interactive()) browseURL("logo.html") # you can check its HTML source

imgur_upload Upload an image to imgur.com

Description

This function uses the RCurl package to upload a image to imgur.com, and parses the XML re-
sponse to a list with XML which contains information about the image in the Imgur website.

Usage

imgur_upload(file, key = "9f3460e67f308f6")

http://en.wikipedia.org/wiki/Data_URI_scheme
imgur.com

20 imgur_upload

Arguments

file the path to the image file to be uploaded

key the client id for Imgur (by default uses a client id registered by Yihui Xie)

Details

When the output format from knit() is HTML or Markdown, this function can be used to upload lo-
cal image files to Imgur, e.g. set the package option opts_knit$set(upload.fun = imgur_upload),
so the output document is completely self-contained, i.e. it does not need external image files any
more, and it is ready to be published online.

Value

A character string of the link to the image; this string carries an attribute named XML which is a list
converted from the response XML file; see Imgur API in the references.

Note

Please register your own Imgur application to get your client id; you can certainly use mine, but this
id is in the public domain so everyone has access to all images associated to it.

Author(s)

Yihui Xie, adapted from the imguR package by Aaron Statham

References

Imgur API version 3: http://api.imgur.com/; a demo: http://yihui.name/knitr/demo/
upload/

Examples

Not run:
f = tempfile(fileext = ".png")
png(f)
plot(rnorm(100), main = R.version.string)
dev.off()

res = imgur_upload(f)
res # link to original URL of the image
attr(res, "XML") # all information
if (interactive())

browseURL(res)

to use your own key
opts_knit$set(upload.fun = function(file) imgur_upload(file, key = "your imgur key"))

End(Not run)

http://api.imgur.com/
http://yihui.name/knitr/demo/upload/
http://yihui.name/knitr/demo/upload/

include_graphics 21

include_graphics Embed external images in knitr documents

Description

When plots are not generated from R code, there is no way for knitr to capture plots automatically.
In this case, you may generate the images manually and pass their file paths to this function to
include them in the output. The major advantage of using this function is that it is portable in the
sense that it works for all document formats that knitr supports, so you do not need to think if
you have to use, for example, LaTeX or Markdown syntax, to embed an external image. Chunk
options related to graphics output that work for normal R plots also work for these images, such as
out.width and out.height.

Usage

include_graphics(path, auto_pdf = TRUE, dpi = NULL)

Arguments

path a character vector of image paths

auto_pdf whether to use PDF images automatically when the output format is LaTeX, e.g.
‘foo/bar.png’ will be replaced by ‘foo/bar.pdf’ if the latter exists; this can
be useful since normally PDF images are of higher qualities than raster images
like PNG when the output is LaTeX/PDF

dpi the DPI (dots per inch) value to be used to calculate the output width (in inches)
of the images from the actual width (in pixels) divided by dpi; if not provided,
the chunk option dpi is used; if NA, the output width will not be calculated

Value

The same as the input character vector path but it is marked with special internal S3 classes so that
knitr will convert the file paths to proper output code according to the output format.

Note

This function is supposed to be used in R code chunks or inline R code expressions. You are
recommended to use forward slashes (/) as path separators instead of backslashes in the image
paths.

The automatic calculation of the output width requires the png package (for PNG images) or the
jpeg package (for JPEG images). The width will not be calculated if the chunk option out.width
is already provided or dpi = NA.

22 inline_expr

include_url Embed a URL as an HTML iframe or a screenshot in knitr documents

Description

When the output format is HTML, include_url() inserts an iframe in the output; otherwise it
takes a screenshot of the URL and insert the image in the output. include_app() takes the URL of
a Shiny app and adds ‘?showcase=0’ to it (to disable the showcase mode), then passes the URL to
include_url().

Usage

include_url(url, height = "400px")

include_app(url, height = "400px")

Arguments

url a character string of a URL
height the height of the iframe

Value

An R object with a special class that knitr recognizes internally to generate the iframe or screenshot.

See Also

include_graphics

inline_expr Wrap code using the inline R expression syntax

Description

This is a convenience function to write the "source code" of inline R expressions. For example, if
you want to write ‘`r 1+1`’ literally in an R Markdown document, you may write ‘`` `r knitr::inline_expr('1+1')`
``’; for Rnw documents, this may be ‘\verb|\Sexpr{knitr::inline_expr{'1+1'}}|’.

Usage

inline_expr(code, syntax)

Arguments

code a character string of the inline R source code
syntax a character string to specify the syntax, e.g. rnw, html, or md, etc; if not speci-

fied, it will be guessed from the knitting context

kable 23

Value

A character string marked up using the inline R code syntax.

Examples

library(knitr)
inline_expr("1+1", "rnw")
inline_expr("1+1", "html")
inline_expr("1+1", "md")

kable Create tables in LaTeX, HTML, Markdown and reStructuredText

Description

This is a very simple table generator. It is simple by design. It is not intended to replace any other
R packages for making tables.

Usage

kable(x, format, digits = getOption("digits"), row.names = NA, col.names = NA, align,
caption = NULL, format.args = list(), escape = TRUE, ...)

Arguments

x an R object (typically a matrix or data frame)
format a character string; possible values are latex, html, markdown, pandoc, and rst;

this will be automatically determined if the function is called within knitr; it can
also be set in the global option knitr.table.format; if format is a function,
it must return a character string

digits the maximum number of digits for numeric columns (passed to round()); it can
also be a vector of length ncol(x) to set the number of digits for individual
columns

row.names a logical value indicating whether to include row names; by default, row names
are included if rownames(x) is neither NULL nor identical to 1:nrow(x)

col.names a character vector of column names to be used in the table
align the alignment of columns: a character vector consisting of 'l' (left), 'c' (cen-

ter) and/or 'r' (right); by default, numeric columns are right-aligned, and other
columns are left-aligned; if align = NULL, the default alignment is used; alter-
natively, if length(align) == 1L, the string will be expanded to a vector of
individual letters unless the output format is LaTeX; for example, 'clc' will be
converted to c('c', 'l', 'c')

caption the table caption
format.args a list of arguments to be passed to format() to format table values, e.g. list(big.mark = ',')

escape escape special characters when producing HTML or LaTeX tables
... other arguments (see examples)

24 kable

Details

Missing values (NA) in the table are displayed as NA by default. If you want to display them with
other characters, you can set the option knitr.kable.NA, e.g. options(knitr.kable.NA = '')
to hide NA values.

Value

A character vector of the table source code.

Note

The tables for format = 'markdown' also work for Pandoc when the pipe_tables extension is
enabled (this is the default behavior for Pandoc >= 1.10).

When using kable() as a top-level expression, you do not need to explicitly print() it due to R’s
automatic implicit printing. When it is wrapped inside other expressions (such as a for loop), you
must explicitly print(kable(...)).

References

See https://github.com/yihui/knitr-examples/blob/master/091-knitr-table.Rnw for some
examples in LaTeX, but they also apply to other document formats.

See Also

Other R packages such as xtable and tables for HTML and LaTeX tables, and ascii and pander for
different flavors of markdown output and some advanced features and table styles.

Examples

kable(head(iris), format = "latex")
kable(head(iris), format = "html")
kable(head(iris), format = "latex", caption = "Title of the table")
kable(head(iris), format = "html", caption = "Title of the table")
use the booktabs package
kable(mtcars, format = "latex", booktabs = TRUE)
use the longtable package
kable(matrix(1000, ncol = 5), format = "latex", digits = 2, longtable = TRUE)
add some table attributes
kable(head(iris), format = "html", table.attr = "id=\"mytable\"")
reST output
kable(head(mtcars), format = "rst")
no row names
kable(head(mtcars), format = "rst", row.names = FALSE)
R Markdown/Github Markdown tables
kable(head(mtcars[, 1:5]), format = "markdown")
no inner padding
kable(head(mtcars), format = "markdown", padding = 0)
more padding
kable(head(mtcars), format = "markdown", padding = 2)
Pandoc tables

https://github.com/yihui/knitr-examples/blob/master/091-knitr-table.Rnw

knit 25

kable(head(mtcars), format = "pandoc", caption = "Title of the table")
format numbers using , as decimal point, and ' as thousands separator
x = as.data.frame(matrix(rnorm(60, 1e+06, 10000), 10))
kable(x, format.args = list(decimal.mark = ",", big.mark = "'"))
save the value
x = kable(mtcars, format = "html")
cat(x, sep = "\n")
can also set options(knitr.table.format = 'html') so that the output is HTML

knit Knit a document

Description

This function takes an input file, extracts the R code in it according to a list of patterns, evaluates the
code and writes the output in another file. It can also tangle R source code from the input document
(purl() is a wrapper to knit(..., tangle = TRUE)). The knitr.purl.inline option can be
used to also tangle the code of inline expressions (disabled by default).

Usage

knit(input, output = NULL, tangle = FALSE, text = NULL, quiet = FALSE,
envir = parent.frame(), encoding = getOption("encoding"))

purl(..., documentation = 1L)

Arguments

input path of the input file

output path of the output file for knit(); if NULL, this function will try to guess and it
will be under the current working directory

tangle whether to tangle the R code from the input file (like Stangle)

text a character vector as an alternative way to provide the input file

quiet whether to suppress the progress bar and messages

envir the environment in which the code chunks are to be evaluated (for example,
parent.frame(), new.env(), or globalenv())

encoding the encoding of the input file; see file

... arguments passed to knit() from purl()

documentation an integer specifying the level of documentation to go the tangled script: 0
means pure code (discard all text chunks); 1 (default) means add the chunk
headers to code; 2 means add all text chunks to code as roxygen comments

26 knit

Details

For most of the time, it is not necessary to set any options outside the input document; in other
words, a single call like knit('my_input.Rnw') is usually enough. This function will try to de-
termine many internal settings automatically. For the sake of reproducibility, it is better practice to
include the options inside the input document (to be self-contained), instead of setting them before
knitting the document.

First the filename of the output document is determined in this way: ‘foo.Rnw’ generates ‘foo.tex’,
and other filename extensions like ‘.Rtex’, ‘.Rhtml’ (‘.Rhtm’) and ‘.Rmd’ (‘.Rmarkdown’) will
generate ‘.tex’, ‘.html’ and ‘.md’ respectively. For other types of files, if the filename contains
‘_knit_’, this part will be removed in the output file, e.g., ‘foo_knit_.html’ creates the output
‘foo.html’; if ‘_knit_’ is not found in the filename, ‘foo.ext’ will produce ‘foo.txt’ if ext is
not txt, otherwise the output is ‘foo-out.txt’. If tangle = TRUE, ‘foo.ext’ generates an R
script ‘foo.R’.

We need a set of syntax to identify special markups for R code chunks and R options, etc. The syntax
is defined in a pattern list. All built-in pattern lists can be found in all_patterns (call it apat).
First knitr will try to decide the pattern list based on the filename extension of the input document,
e.g. ‘Rnw’ files use the list apat$rnw, ‘tex’ uses the list apat$tex, ‘brew’ uses apat$brew and
HTML files use apat$html; for unkown extensions, the content of the input document is matched
against all pattern lists to automatically determine which pattern list is being used. You can also
manually set the pattern list using the knit_patterns object or the pat_rnw series functions in
advance and knitr will respect the setting.

According to the output format (opts_knit$get('out.format')), a set of output hooks will be
set to mark up results from R (see render_latex). The output format can be LaTeX, Sweave and
HTML, etc. The output hooks decide how to mark up the results (you can customize the hooks).

The name knit comes from its counterpart ‘weave’ (as in Sweave), and the name purl (as ‘tangle’
in Stangle) comes from a knitting method ‘knit one, purl one’.

If the input document has child documents, they will also be compiled recursively. See knit_child.

See the package website and manuals in the references to know more about knitr, including the full
documentation of chunk options and demos, etc.

Value

The compiled document is written into the output file, and the path of the output file is returned. If
the text argument is not NULL, the compiled output is returned as a character vector. In other words,
if you provide a file input, you get an output filename; if you provide a character vector input, you
get a character vector output.

Note

The working directory when evaluating R code chunks is the directory of the input document by
default, so if the R code involves external files (like read.table()), it is better to put these files
under the same directory of the input document so that we can use relative paths. However, it is
possible to change this directory with the package option opts_knit$set(root.dir = ...) so
all paths in code chunks are relative to this root.dir. It is not recommended to change the working
directory via setwd() in a code chunk, because it may lead to terrible consequences (e.g. figure
and cache files may be written to wrong places). If you do use setwd(), please note that knitr

knit2html 27

will always restore the working directory to the original one. Whenever you feel confused, print
getwd() in a code chunk to see what the working directory really is.

The arguments input and output do not have to be restricted to files; they can be stdin()/stdout()
or other types of connections, but the pattern list to read the input has to be set in advance (see
pat_rnw), and the output hooks should also be set (see render_latex), otherwise knitr will try to
guess the patterns and output format.

If the output argument is a file path, it is strongly recommended to be in the current working
directory (e.g. ‘foo.tex’ instead of ‘somewhere/foo.tex’), especially when the output has ex-
ternal dependencies such as figure files. If you want to write the output to a different directory,
it is recommended to set the working directory to that directory before you knit a document. For
example, if the source document is ‘foo.Rmd’ and the expected output is ‘out/foo.md’, you can
write setwd('out/'); knit('../foo.Rmd') instead of knit('foo.Rmd', 'out/foo.md').

N.B. There is no guarantee that the R script generated by purl() can reproduce the computation
done in knit(). The knit() process can be fairly complicated (special values for chunk options,
custom chunk hooks, computing engines besides R, and the envir argument, etc). If you want
to reproduce the computation in a report generated by knit(), be sure to use knit(), instead of
merely executing the R script generated by purl(). This seems to be obvious, but some people just
do not get it.

References

Package homepage: http://yihui.name/knitr/. The knitr main manual: and graphics manual.

See citation('knitr') for the citation information.

Examples

library(knitr)
(f = system.file("examples", "knitr-minimal.Rnw", package = "knitr"))
knit(f) # compile to tex

purl(f) # tangle R code
purl(f, documentation = 0) # extract R code only
purl(f, documentation = 2) # also include documentation

knit2html Convert markdown to HTML using knit() and markdownToHTML()

Description

This is a convenience function to knit the input markdown source and call markdownToHTML() in
the markdown package to convert the result to HTML.

Usage

knit2html(input, output = NULL, ..., envir = parent.frame(), text = NULL, quiet = FALSE,
encoding = getOption("encoding"), force_v1 = FALSE)

http://bit.ly/SnLi6h
http://bit.ly/SnLi6h
http://yihui.name/knitr/
http://yihui.name/knitr/demo/manual/
http://yihui.name/knitr/demo/graphics

28 knit2pdf

Arguments

input path of the input file

output path of the output file for knit(); if NULL, this function will try to guess and it
will be under the current working directory

... options passed to markdownToHTML

envir the environment in which the code chunks are to be evaluated (for example,
parent.frame(), new.env(), or globalenv())

text a character vector as an alternative way to provide the input file

quiet whether to suppress the progress bar and messages

encoding the encoding of the input file; see file

force_v1 whether to force rendering the input document as an R Markdown v1 document
(even if it is for v2)

Value

If the argument text is NULL, a character string (HTML code) is returned; otherwise the result is
written into a file and the filename is returned.

Note

The markdown package is for R Markdown v1, which is much less powerful than R Markdown
v2, i.e. the rmarkdown package (http://rmarkdown.rstudio.com). To render R Markdown v2
documents to HTML, please use rmarkdown::render() instead.

See Also

knit, markdownToHTML

Examples

a minimal example
writeLines(c("# hello markdown", "```{r hello-random, echo=TRUE}", "rnorm(5)", "```"),

"test.Rmd")
knit2html("test.Rmd")
if (interactive()) browseURL("test.html")

knit2pdf Convert Rnw or Rrst files to PDF using knit() and texi2pdf() or
rst2pdf()

Description

Knit the input Rnw or Rrst document, and compile to PDF using texi2pdf or rst2pdf.

http://rmarkdown.rstudio.com

knit2pdf 29

Usage

knit2pdf(input, output = NULL, compiler = NULL, envir = parent.frame(), quiet = FALSE,
encoding = getOption("encoding"), ...)

Arguments

input path of the input file

output path of the output file for knit(); if NULL, this function will try to guess and it
will be under the current working directory

compiler a character string which gives the LaTeX program used to compile the tex doc-
ument to PDF (by default it uses the default setting of texi2pdf, which is often
PDFLaTeX); this argument will be used to temporarily set the environmental
variable ‘PDFLATEX’. For an Rrst file, setting compiler to 'rst2pdf' will use
rst2pdf to compiles the rst file to PDF using the ReportLab open-source li-
brary.

envir the environment in which the code chunks are to be evaluated (for example,
parent.frame(), new.env(), or globalenv())

quiet whether to suppress the progress bar and messages

encoding the encoding of the input file; see file

... options to be passed to texi2pdf or rst2pdf

Value

The filename of the PDF file.

Note

The output argument specifies the output filename to be passed to the PDF compiler (e.g. a tex
document) instead of the PDF filename.

Author(s)

Ramnath Vaidyanathan, Alex Zvoleff and Yihui Xie

See Also

knit, texi2pdf, rst2pdf

Examples

#' compile with xelatex
knit2pdf(..., compiler = 'xelatex')

#' compile a reST file with rst2pdf
knit2pdf(..., compiler = 'rst2pdf')

30 knit2wp

knit2wp Knit an R Markdown document and post it to WordPress

Description

This function is a wrapper around the RWordPress package. It compiles an R Markdown document
to HTML and post the results to WordPress.

Usage

knit2wp(input, title = "A post from knitr", ..., envir = parent.frame(),
shortcode = FALSE, action = c("newPost", "editPost", "newPage"), postid,
encoding = getOption("encoding"), publish = TRUE)

Arguments

input the filename of the Rmd document

title the post title

... other meta information of the post, e.g. categories = c('R','Stats') and
mt_keywords = c('knitr', 'wordpress'), etc

envir the environment in which the code chunks are to be evaluated (for example,
parent.frame(), new.env(), or globalenv())

shortcode a logical vector of length 2: whether to use the shortcode ‘[sourcecode lang='lang']’
which can be useful to WordPress.com users for syntax highlighting of source
code and output; the first element applies to source code, and the second applies
to text output (by default, both are FALSE)

action to create a new post, update an existing post, or create a new page

postid if action is editPost, the post id postid must be specified

encoding the encoding of the input file; see file

publish whether to publish the post immediately

Note

This function will convert the encoding of the post and the title to UTF-8 internally. If you have
additional data to send to WordPress (e.g. keywords and categories), you may have to manually
convert them to the UTF-8 encoding with the iconv(x, to = 'UTF-8') function (especially when
using Windows).

Author(s)

William K. Morris, Yihui Xie, and Jared Lander

References

http://yihui.name/knitr/demo/wordpress/

http://yihui.name/knitr/demo/wordpress/

knit_child 31

Examples

see the reference

knit_child Knit a child document

Description

This function knits a child document and returns a character string to input the result into the main
document. It is designed to be used in the chunk option child and serves as the alternative to the
SweaveInput command in Sweave.

Usage

knit_child(..., options = NULL, envir = knit_global())

Arguments

... arguments passed to knit

options a list of chunk options to be used as global options inside the child document
(ignored if not a list); when one uses the child option in a parent chunk, the
chunk options of the parent chunk will be passed to the options argument here

envir the environment in which the code chunks are to be evaluated (for example,
parent.frame(), new.env(), or globalenv())

Value

A character string of the content of the compiled child document is returned as a character string so
it can be written back to the parent document directly.

Note

This function is not supposed be called directly like knit(); instead it must be placed in a parent
document to let knit() call it indirectly.

The path of the child document is determined relative to the parent document.

References

http://yihui.name/knitr/demo/child/

Examples

you can write \Sexpr{knit_child('child-doc.Rnw')} in an Rnw file 'main.Rnw'
to input results from child-doc.Rnw in main.tex

comment out the child doc by \Sexpr{knit_child('child-doc.Rnw', eval =
FALSE)}

http://yihui.name/knitr/demo/child/

32 knit_engines

knit_engines Engines of other languages

Description

This object controls how to execute the code from languages other than R (when the chunk option
engine is not 'R'). Each component in this object is a function that takes a list of current chunk
options (including the source code) and returns a character string to be written into the output.

Usage

knit_engines

Format

An object of class list of length 4.

Details

The engine function has one argument options: the source code of the current chunk is in options$code.
Usually we can call external programs to run the code via system2. Other chunk options are also
contained in this argument, e.g. options$echo and options$eval, etc.

In most cases, options$engine can be directly used in command line to execute the code, e.g.
python or ruby, but sometimes we may want to specify the path of the engine program, in which
case we can pass it through the engine.path option. For example, engine='ruby',engine.path='/usr/bin/ruby1.9.1'.
Additional command line arguments can be passed through options$engine.opts, e.g. engine='ruby',engine.opts='-v'.

Below is a list of built-in language engines, retrieved via knit_engines$get():
List of 38
$ awk :function (options)
$ bash :function (options)
$ coffee :function (options)
$ gawk :function (options)
$ groovy :function (options)
$ haskell :function (options)
$ lein :function (options)
$ mysql :function (options)
$ node :function (options)
$ octave :function (options)
$ perl :function (options)
$ psql :function (options)
$ python :function (options)
$ Rscript :function (options)
$ ruby :function (options)
$ sas :function (options)
$ scala :function (options)
$ sed :function (options)

knit_exit 33

$ sh :function (options)
$ stata :function (options)
$ zsh :function (options)
$ highlight:function (options)
$ Rcpp :function (options)
$ tikz :function (options)
$ dot :function (options)
$ c :function (options)
$ fortran :function (options)
$ fortran95:function (options)
$ asy :function (options)
$ cat :function (options)
$ asis :function (options)
$ stan :function (options)
$ block :function (options)
$ block2 :function (options)
$ js :function (options)
$ css :function (options)
$ sql :function (options)
$ go :function (options)

Note

The Leiningen engine lein requires lein-exec plugin; see https://github.com/yihui/knitr/
issues/1176 for details.

References

Usage: http://yihui.name/knitr/objects; examples: http://yihui.name/knitr/demo/engines/

Examples

knit_engines$get("python")
knit_engines$get("awk")
names(knit_engines$get())

knit_exit Exit knitting early

Description

Sometimes we may want to exit the knitting process early, and completely ignore the rest of the
document. This function provides a mechanism to terminate knit().

Usage

knit_exit(append)

https://github.com/yihui/knitr/issues/1176
https://github.com/yihui/knitr/issues/1176
http://yihui.name/knitr/objects
http://yihui.name/knitr/demo/engines/

34 knit_expand

Arguments

append a character vector to be appended to the results from knit() so far; by default,
it is ‘\end{document}’ for LaTeX output, and ‘</body></html>’ for HTML
output to make the output document complete; for other types of output, it is an
empty string

Value

Invisible NULL. An internal signal is set up (as a side effect) to notify knit() to quit as if it had
reached the end of the document.

Examples

see https://github.com/yihui/knitr-examples/blob/master/096-knit-exit.Rmd

knit_expand A simple macro preprocessor for templating purposes

Description

This function expands a template based on the R expressions in {{}} (this tag can be customized
by the delim argument). These expressions are extracted, evaluated and replaced by their values in
the original template.

Usage

knit_expand(file, ..., text = readLines(file, warn = FALSE), delim = c("{{", "}}"))

Arguments

file the template file

... a list of variables to be used for the code in the template; note the variables will
be searched in the parent frame as well

text an alternative way to file to specify the template code directly (if provided,
file will be ignored)

delim the (opening and ending) delimiters for the templating tags

Value

A character vector, with the tags evaluated and replaced by their values.

References

This function was inspired by the pyexpander and m4 (http://www.gnu.org/software/m4/),
thanks to Frank Harrell.

http://www.gnu.org/software/m4/

knit_filter 35

Examples

see the knit_expand vignette
if (interactive()) browseVignettes(package = "knitr")

knit_filter Spell check filter for source documents

Description

When performing spell checking on source documents, we may need to skip R code chunks and
inline R expressions, because many R functions and symbols are likely to be identified as typos.
This function is designed for the filter argument of aspell() to filter out code chunks and inline
expressions.

Usage

knit_filter(ifile, encoding = "unknown")

Arguments

ifile the filename of the source document

encoding the file encoding

Value

A chracter vector of the file content, excluding code chunks and inline expressions.

Examples

library(knitr)
knitr_example = function(...) system.file("examples", ..., package = "knitr")

if (Sys.which("aspell") != "") {
-t means the TeX mode
utils::aspell(knitr_example("knitr-minimal.Rnw"), knit_filter, control = "-t")

-H is the HTML mode
utils::aspell(knitr_example("knitr-minimal.Rmd"), knit_filter, control = "-H -t")

}

36 knit_hooks

knit_global The global environment in which code chunks are evaluated

Description

This function makes the environment of a code chunk accessible inside a chunk.

Usage

knit_global()

Details

It returns the envir argument of knit, e.g. if we call knit() in the global environment, knit_global()
returns R’s global environment by default. You can call functions like ls() on this environment.

knit_hooks Hooks for R code chunks, inline R code and output

Description

A hook is a function of a pre-defined form (arguments) that takes values of arguments and returns
desired output. The object knit_hooks is used to access or set hooks in this package.

Usage

knit_hooks

Format

An object of class list of length 4.

References

Usage: http://yihui.name/knitr/objects

Components in knit_hooks: http://yihui.name/knitr/hooks

Examples

knit_hooks$get("source")
knit_hooks$get("inline")

http://yihui.name/knitr/objects
http://yihui.name/knitr/hooks

knit_meta 37

knit_meta Metadata about objects to be printed

Description

As an object is printed, knitr will collect metadata about it (if available). After knitting is done, all
the metadata is accessible via this function. You can manually add metadata to the knitr session
via knit_meta_add().

Usage

knit_meta(class = NULL, clean = TRUE)

knit_meta_add(meta, label = "")

Arguments

class optionally return only metadata entries that inherit from the specified class; the
default, NULL, returns all entries.

clean whether to clean the collected metadata; by default, the metadata stored in knitr
is cleaned up once retrieved, because we may not want the metadata to be passed
to the next knit() call; to be defensive (i.e. not to have carryover metadata),
you can call knit_meta() before knit()

meta a metadata object to be added to the session

label a chunk label to indicate which chunk the metadata belongs to

Value

knit_meta() returns the matched metadata specified by class; knit_meta_add() returns all cur-
rent metadata.

knit_params Extract knit parameters from a document

Description

This function reads the YAML front-matter section of a document and returns a list of any param-
eters declared there. This function exists primarily to support the parameterized reports feature of
the rmarkdown package, however is also used by the knitr purl function to include the default
parameter values in the R code it emits.

Usage

knit_params(text, evaluate = TRUE)

38 knit_params

Arguments

text Character vector containing the document text

evaluate If TRUE, expression values embedded within the YAML will be evaluated. This
is the default. When FALSE, parameters defined by an expression will have the
parsed expression in its value field.

Details

Parameters are included in YAML front matter using the params key. This key can have any number
of subkeys each of which represents a parameter. For example:

title: My Document
output: html_document
params:
frequency: 10
show_details: true

Parameter values can be provided inline as illustrated above or can be included in a value sub-key.
For example:

title: My Document
output: html_document
params:
frequency:
value: 10

This second form is useful when you need to provide additional details about the parameter (e.g. a
label field as describe above).

You can also use R code to yield the value of a parameter by prefacing the value with !r, for
example:

title: My Document
output: html_document
params:
start: !r Sys.Date()

Value

List of objects of class knit_param that correspond to the parameters declared in the params section
of the YAML front matter. These objects have the following fields:

name The parameter name.

knit_params_yaml 39

value The default value for the parameter.

expr The R expression (if any) that yielded the default value.

In addition, other fields included in the YAML may also be present alongside the name, type,
and value fields (e.g. a label field that provides front-ends with a human readable name for the
parameter).

knit_params_yaml Extract knit parameters from YAML text

Description

This function reads the YAML front-matter that has already been extracted from a document and
returns a list of any parameters declared there.

Usage

knit_params_yaml(yaml, evaluate = TRUE)

Arguments

yaml Character vector containing the YAML text

evaluate If TRUE, expression values embedded within the YAML will be evaluated. This
is the default. When FALSE, parameters defined by an expression will have the
parsed expression in its value field.

Value

List of objects of class knit_param that correspond to the parameters declared in the params section
of the YAML. See knit_params for a full description of these objects.

See Also

knit_params

40 knit_patterns

knit_patterns Patterns to match and extract R code in a document

Description

Patterns are regular expressions and will be used in functions like grep to extract R code and chunk
options. The object knit_patterns controls the patterns currently used; see the references and
examples for usage. All built-in patterns are available in the list all_patterns.

Usage

knit_patterns

Format

An object of class list of length 4.

References

Usage: http://yihui.name/knitr/objects

Components in knit_patterns: http://yihui.name/knitr/patterns

See Also

all_patterns

Examples

library(knitr)
opat = knit_patterns$get() # old pattern list (to restore later)

apats = all_patterns # a list of all built-in patterns
str(apats)
knit_patterns$set(apats[["rnw"]]) # set pattern list from apats

knit_patterns$get(c("chunk.begin", "chunk.end", "inline.code"))

a customized pattern list; has to empty the original patterns first!
knit_patterns$restore()
we may want to use this in an HTML document
knit_patterns$set(list(chunk.begin = "<!--helloR\\s+(.*)", chunk.end = "^byeR-->"))
str(knit_patterns$get())

knit_patterns$set(opat) # put the old patterns back

http://yihui.name/knitr/objects
http://yihui.name/knitr/patterns

knit_print 41

knit_print A custom printing function

Description

The S3 generic function knit_print is the default printing function in knitr. The chunk option
render uses this function by default. The main purpose of this S3 generic function is to customize
printing of R objects in code chunks. We can fall back to the normal printing behavior by setting
the chunk option render = normal_print.

Usage

knit_print(x, ...)

normal_print(x, ...)

Arguments

x an R object to be printed

... additional arguments passed to the S3 method (currently ignored, except two
optional arguments options and inline; see the references below)

Details

Users can write custom methods based on this generic function. For example, if we want to print
all data frames as tables in the output, we can define a method knit_print.data.frame that turns
a data.frame into a table (the implementation may use other R packages or functions, e.g. xtable or
kable()).

Value

The value returned from the print method should be a character vector or can be converted to a
character value. You can wrap the value in asis_output() so that knitr writes the character value
as is in the output.

Note

It is recommended to leave a ... argument in your method, to allow future changes of the knit_print()
API without breaking your method.

References

See vignette('knit_print', package = 'knitr').

42 knit_rd

Examples

library(knitr)
write tables for data frames
knit_print.data.frame = function(x, ...) {

res = paste(c("", "", kable(x, output = FALSE)), collapse = "\n")
asis_output(res)

}
after you defined the above method, data frames will be printed as tables in
knitr, which is different with the default print() behavior

knit_rd Knit package documentation

Description

Run examples in a package and insert output into the examples code; knit_rd_all() is a wrapper
around knit_rd() to build static HTML help pages for all packages under the ‘html’ directory of
them.

Usage

knit_rd(pkg, links = tools::findHTMLlinks(), frame = TRUE)

knit_rd_all()

Arguments

pkg package name

links a character vector of links to be passed to Rd2HTML

frame whether to put a navigation frame on left of the index page

Value

All HTML pages corresponding to topics in the package are written under the current working
directory. An ‘index.html’ is also written as a table of content.

Note

Ideally the html pages should be put under the ‘html’ directory of an installed package which can
be found via system.file('html', package = 'your_package_name'), otherwise some links
may not work (e.g. the link to the DESCRITION file).

knit_theme 43

Examples

library(knitr)
Not run:

knit_rd("maps")
knit_rd("rpart")
setwd(system.file("html", package = "ggplot2"))
knit_rd("ggplot2") # time-consuming!

knit_rd_all() # this may take really long time if you have many packages installed

End(Not run)

knit_theme Syntax highlighting themes

Description

This object can be used to set or get themes in knitr for syntax highlighting.

Usage

knit_theme

Format

An object of class list of length 2.

Details

We can use knit_theme$set(theme) to set the theme, and knit_theme$get(theme) to get a
theme. The theme is a character string for both methods (either the name of the theme, or the path
to the CSS file of a theme), and for the set() method, it can also be a list returned by the get()
method. See examples below.

Note

The syntax highlighting here only applies to ‘.Rnw’ (LaTeX) and ‘.Rhtml’ (HTML) documents,
and it does not work for other types of documents, such as ‘.Rmd’ (R Markdown, which has its own
syntax highlighting themes; see http://rmarkdown.rstudio.com).

Author(s)

Ramnath Vaidyanathan and Yihui Xie

References

For a preview of all themes, see https://gist.github.com/yihui/3422133.

http://rmarkdown.rstudio.com
https://gist.github.com/yihui/3422133

44 knit_watch

Examples

opts_knit$set(out.format = "latex")
knit_theme$set("edit-vim")

knit_theme$get() # names of all available themes

thm = knit_theme$get("acid") # parse the theme to a list
knit_theme$set(thm)

opts_knit$set(out.format = NULL) # restore option

knit_watch Watch an input file continuously and knit it when it is updated

Description

Check the modification time of an input file continously in an infinite loop. Whenever the time
indicates the file has been modified, call a function to recompile the input file.

Usage

knit_watch(input, compile = knit, interval = 1, ...)

Arguments

input an input file path (or a character vector of mutiple paths of input files)

compile a function to compile the input file, e.g. it can be knit or knit2pdf depending
on the input file and the output you want

interval a time interval to pause in each cycle of the infinite loop

... other arguments to be passed to the compile function

Details

This is actually a general function not necessarily restricted to applications in knitr. You may
specify any compile function to process the input file. To stop the infinite loop, press the ‘Escape’
key or ‘Ctrl + C’ (depending on your editing environment and operating system).

Examples

knit_watch('foo.Rnw', knit2pdf)

knit_watch('foo.Rmd', rmarkdown::render)

load_cache 45

load_cache Load the cache database of a code chunk

Description

If a code chunk has turned on the chunk option cache = TRUE, a cache database will be established
after the document is compiled. You can use this function to manually load the database anywhere
in the document (even before the code chunk). This makes it possible to use objects created later
in the document earlier, e.g. in an inline R expression before the cached code chunk, which is
normally not possible because knitr compiles the document in a linear fashion, and objects created
later cannot be used before they are created.

Usage

load_cache(label, object, notfound = "NOT AVAILABLE",
path = opts_chunk$get("cache.path"), lazy = TRUE)

Arguments

label the chunk label of the code chunk that has a cache database

object the name of the object to be fetched from the database (if missing, NULL is re-
turned)

notfound a value to use when the object cannot be found

path the path of the cache database (normally set in the global chunk option cache.path)

lazy whether to lazyLoad the cache database (depending on the chunk option cache.lazy = TRUE
or FALSE of that code chunk)

Value

Invisible NULL when object is not specified (the cache database will be loaded as a side effect),
otherwise the value of the object if found.

Note

Apparently this function loads the value of the object from the previous run of the document, which
may be problematic when the value of the object becomes different the next time the document
is compiled. Normally you must compile the document twice to make sure the cache database is
created, and the object can be read from it. Please use this function with caution.

References

See the example #114 at https://github.com/yihui/knitr-examples.

https://github.com/yihui/knitr-examples

46 opts_chunk

opts_chunk Default and current chunk options

Description

Options for R code chunks. When running R code, the object opts_chunk (default options) is
not modified by chunk headers (local chunk options are merged with default options), whereas
opts_current (current options) changes with different chunk headers and it always reflects the
options for the current chunk.

Usage

opts_chunk

opts_current

Format

An object of class list of length 4.

Details

Normally we set up the global options once in the first code chunk in a document using opts_chunk$set(),
so that all latter chunks will use these options. Note the global options set in one chunk will not af-
fect the options in this chunk itself, and that is why we often need to set global options in a separate
chunk.

Below is a list of default chunk options, retrieved via opts_chunk$get():
List of 53
$ eval : logi TRUE
$ echo : logi TRUE
$ results : chr "markup"
$ tidy : logi FALSE
$ tidy.opts : NULL
$ collapse : logi FALSE
$ prompt : logi FALSE
$ comment : chr "##"
$ highlight : logi TRUE
$ strip.white : logi TRUE
$ size : chr "normalsize"
$ background : chr "#F7F7F7"
$ cache : logi FALSE
$ cache.path : chr "cache/"
$ cache.vars : NULL
$ cache.lazy : logi TRUE
$ dependson : NULL
$ autodep : logi FALSE
$ cache.rebuild: logi FALSE

opts_chunk 47

$ fig.keep : chr "high"
$ fig.show : chr "asis"
$ fig.align : chr "default"
$ fig.path : chr "figure/"
$ dev : NULL
$ dev.args : NULL
$ dpi : num 72
$ fig.ext : NULL
$ fig.width : num 7
$ fig.height : num 7
$ fig.env : chr "figure"
$ fig.cap : NULL
$ fig.scap : NULL
$ fig.lp : chr "fig:"
$ fig.subcap : NULL
$ fig.pos : chr ""
$ out.width : NULL
$ out.height : NULL
$ out.extra : NULL
$ fig.retina : num 1
$ external : logi TRUE
$ sanitize : logi FALSE
$ interval : num 1
$ aniopts : chr "controls,loop"
$ warning : logi TRUE
$ error : logi TRUE
$ message : logi TRUE
$ render : NULL
$ ref.label : NULL
$ child : NULL
$ engine : chr "R"
$ split : logi FALSE
$ include : logi TRUE
$ purl : logi TRUE

Note

opts_current is read-only in the sense that it does nothing if you call opts_current$set(); you
can only query the options via opts_current$get().

References

Usage: http://yihui.name/knitr/objects

A list of available options: http://yihui.name/knitr/options#chunk_options

Examples

opts_chunk$get("prompt")
opts_chunk$get("fig.keep")

http://yihui.name/knitr/objects
http://yihui.name/knitr/options#chunk_options

48 opts_knit

opts_hooks Hooks for code chunk options

Description

Like knit_hooks, this object can be used to set hook functions to manipulate chunk options.

Usage

opts_hooks

Format

An object of class list of length 4.

Details

For every code chunk, if the chunk option named, say, FOO, is not NULL, and a hook function with
the same name has been set via opts_hooks$set(FOO = function(options) { options })
(you can manipuate the options argument in the function and return it), the hook function will be
called to update the chunk options.

References

http://yihui.name/knitr/hooks

Examples

make sure the figure width is no smaller than fig.height
opts_hooks$set(fig.width = function(options) {

if (options$fig.width < options$fig.height) {
options$fig.width = options$fig.height

}
options

})
remove all hooks
opts_hooks$restore()

opts_knit Options for the knitr package

Description

Options including whether to use a progress bar when knitting a document, and the base directory
of images, etc.

http://yihui.name/knitr/hooks

opts_knit 49

Usage

opts_knit

Format

An object of class list of length 4.

Details

Besides the standard usage (opts_knit$set()), we can also set package options prior to load-
ing knitr or calling knit() using options() in base R. A global option knitr.package.foo in
options() will be set as an option foo in opts_knit, i.e. global options in base R with the prefix
knitr.package. correspond to options in opts_knit. This can be useful to set package options in
‘~/.Rprofile’ without loading knitr.

Below is a list of default package options, retrieved via opts_knit$get():
List of 24
$ progress : logi TRUE
$ verbose : logi FALSE
$ width : int 75
$ eval.after : chr "fig.cap"
$ base.dir : NULL
$ base.url : NULL
$ root.dir : NULL
$ child.path : chr ""
$ upload.fun :function (x)
$ animation.fun :function (x, options)
$ global.device : logi FALSE
$ global.par : logi FALSE
$ concordance : logi FALSE
$ documentation : int 1
$ self.contained : logi TRUE
$ unnamed.chunk.label: chr "unnamed-chunk"
$ highr.opts : NULL
$ out.format : NULL
$ child : logi FALSE
$ parent : logi FALSE
$ tangle : logi FALSE
$ aliases : NULL
$ header : Named chr [1:3] "" "" ""
..- attr(*, "names")= chr [1:3] "highlight" "tikz" "framed"

$ global.pars : NULL

References

Usage: http://yihui.name/knitr/objects

A list of available options: http://yihui.name/knitr/options#package_options

http://yihui.name/knitr/objects
http://yihui.name/knitr/options#package_options

50 pandoc

Examples

opts_knit$get("verbose")
opts_knit$set(verbose = TRUE) # change it
if (interactive()) {

for unnamed chunks, use 'fig' as the figure prefix
opts_knit$set(unnamed.chunk.label = "fig")
knit("001-minimal.Rmd") # from https://github.com/yihui/knitr-examples

}

opts_template Template for creating reusable chunk options

Description

Creates a template binding a label to a set of chunk options. Every chunk that references the
template label will have the specificed set of options applied to it.

Usage

opts_template

Format

An object of class list of length 4.

Examples

opts_template$set(myfigures = list(fig.height = 4, fig.width = 4))
later you can reuse these chunk options by 'opts.label', e.g.

<<foo, opts.label='myfigures'>>=

the above is equivalent to <<foo, fig.height=4, fig.width=4>>=

pandoc A Pandoc wrapper to convert documents to other formats

Description

This function calls Pandoc to convert documents to other formats such as HTML, LaTeX/PDF and
Word, etc, (optionally) based on a configuration file or in-file configurations which specify the
options to use for Pandoc.

Usage

pandoc(input, format, config = getOption("config.pandoc"), ext = NA,
encoding = getOption("encoding"))

pandoc 51

Arguments

input a character vector of the Markdown filenames

format the output format (see References); it can be a character vector of multiple for-
mats; by default, it is obtained from the t field in the configuration (if the con-
figuration is empty or the t field is not found, the default output format will be
'html')

config the Pandoc configuration file; if missing, it is assumed to be a file with the same
base name as the input file and an extension .pandoc (e.g. for ‘foo.md’ it looks
for ‘foo.pandoc’)

ext the filename extensions; by default, the extension is inferred from the format,
e.g. latex creates pdf, and dzslides creates html, and so on

encoding the encoding of the input file; see file

Details

There are two ways to input the Pandoc configurations – through a config file, or embed the config-
urations in the input file as special comments between <!--pandoc and -->.

The configuration file is a DCF file (see read.dcf). This file must contain a field named t which
means the output format. The configurations are written in the form of tag:value and passed to
Pandoc (if no value is needed, just leave it empty, e.g. the option standalone or s for short). If
there are multiple output formats, write each format and relevant configurations in a block, and
separate blocks with blank lines.

If there are multiple records of the t field in the configuration, the input markdown file will be
converted to all these formats by default, unless the format argument is specified as one single
format.

Value

The output filename(s) (or an error if the conversion failed).

References

Pandoc: http://pandoc.org; Examples and rules of the configurations: http://yihui.name/
knitr/demo/pandoc

Also see R Markdown (v2) at http://rmarkdown.rstudio.com. The rmarkdown package has
several convenience functions and templates that make it very easy to use Pandoc. The RStudio IDE
also has comprehensive support for it, so I’d recommend users who are not familiar with command-
line tools to use the rmarkdown package instead.

See Also

read.dcf

Examples

system("pandoc -h") # see possible output formats

http://pandoc.org
http://yihui.name/knitr/demo/pandoc
http://yihui.name/knitr/demo/pandoc
http://rmarkdown.rstudio.com

52 pat_rnw

pat_rnw Set regular expressions to read input documents

Description

These are convenience functions to set pre-defined pattern lists (the syntax to read input documents).
The function names are built from corresponding file extensions, e.g. pat_rnw() can set the Sweave
syntax to read Rnw documents.

Usage

pat_rnw()

pat_brew()

pat_tex()

pat_html()

pat_md()

pat_rst()

pat_asciidoc()

pat_textile()

Value

The patterns object knit_patterns is modified as a side effect.

Examples

see how knit_patterns is modified
knit_patterns$get()
pat_rnw()
knit_patterns$get()

knit_patterns$restore() # empty the list

plot_crop 53

plot_crop Crop a plot (remove the edges) using PDFCrop or ImageMagick

Description

The command pdfcrop x x is executed on a PDF plot file, and convert x -trim x is executed
for other types of plot files, where x is the plot filename.

Usage

plot_crop(x, quiet = TRUE)

Arguments

x the plot filename

quiet whether to suppress standard output from the command line utility

Details

The utility pdfcrop is often shipped with a LaTeX distribution, and convert is a command in Im-
ageMagick (Windows users may have to put the bin path of ImageMagick into the PATH variable).

Value

The original filename.

References

PDFCrop: https://www.ctan.org/pkg/pdfcrop; the convert command in ImageMagick: http:
//www.imagemagick.org/script/convert.php

rand_seed An unevaluated expression to return .Random.seed if exists

Description

This expression returns .Random.seed when eval(rand_seed) and NULL otherwise.

Usage

rand_seed

Details

It is designed to work with opts_chunk$set(cache.extra = rand_seed) for reproducibility of
chunks that involve with random number generation. See references.

https://www.ctan.org/pkg/pdfcrop
http://www.imagemagick.org/script/convert.php
http://www.imagemagick.org/script/convert.php

54 read_chunk

References

http://yihui.name/knitr/demo/cache/

Examples

eval(rand_seed)
rnorm(1) # .Random.seed is created (or modified)
eval(rand_seed)

read_chunk Read chunks from an external script

Description

Chunks can be put in an external script, and this function reads chunks into the current knitr session;
read_demo() is a convenience function to read a demo script from a package.

Usage

read_chunk(path, lines = readLines(path, warn = FALSE), labels = NULL, from = NULL,
to = NULL, from.offset = 0L, to.offset = 0L)

read_demo(topic, package = NULL, ...)

Arguments

path the path to the R script

lines a character vector of the code lines (by default read from path)

labels a character vector of chunk labels (default NULL)

from, to a numeric vector specifying the starting/ending line numbers of code chunks, or
a character vector; see Details

from.offset, to.offset

an offset to be added to from/to

topic, package name of the demo and the package see demo

... arguments to be passed to read_chunk

Details

There are two approaches to read external code into the current session: (1) Use a special separator
of the from ## ---- chunk-label (at least four dashes before the chunk label) in the script; (2)
Manually specify the labels, starting and ending positions of code chunks in the script.

The second approach will be used only when labels is not NULL. For this approach, if from is NULL,
the starting position is 1; if to is NULL, each of its element takes the next element of from minus 1,
and the last element of to will be the length of lines (e.g. when from = c(1, 3, 8) and the script
has 10 lines in total, to will be c(2, 7, 10)). Alternatively, from and to can be character vectors

http://yihui.name/knitr/demo/cache/

read_chunk 55

as regular expressions to specify the positions; when their length is 1, the single regular expression
will be matched against the lines vector, otherwise each element of from/to is matched against
lines and the match is supposed to be unique so that the numeric positions returned from grep()
will be of the same length of from/to. Note labels always has to match the length of from and to.

Value

As a side effect, code chunks are read into the current session so that future chunks can (re)use the
code by chunk label references.

Note

This function can only be used in a chunk which is not cached (chunk option cache = FALSE), and
the code is read and stored in the current session without being executed (to actually run the code,
you have to use a chunk with a corresponding label).

Author(s)

Yihui Xie; the idea of the second approach came from Peter Ruckdeschel (author of the SweaveListingUtils
package)

References

http://yihui.name/knitr/demo/externalization/

Examples

put this in foo.R and read_chunk('foo.R')

---- my-label ----
1 + 1
lm(y ~ x, data = data.frame(x = 1:10, y = rnorm(10)))

later you can use <<my-label>>= to reference this chunk

the 2nd approach
code = c("#@a", "1+1", "#@b", "#@a", "rnorm(10)", "#@b")
read_chunk(lines = code, labels = "foo") # put all code into one chunk named foo
read_chunk(lines = code, labels = "foo", from = 2, to = 2) # line 2 into chunk foo
read_chunk(lines = code, labels = c("foo", "bar"), from = c(1, 4), to = c(3, 6))
automatically figure out 'to'
read_chunk(lines = code, labels = c("foo", "bar"), from = c(1, 4))
read_chunk(lines = code, labels = c("foo", "bar"), from = "^#@a", to = "^#@b")
read_chunk(lines = code, labels = c("foo", "bar"), from = "^#@a", to = "^#@b",

from.offset = 1, to.offset = -1)

later you can use, e.g., <<foo>>=
knitr:::knit_code$get() # use this to check chunks in the current session
knitr:::knit_code$restore() # clean up the session

http://yihui.name/knitr/demo/externalization/

56 render_html

read_rforge Read source code from R-Forge

Description

This function reads source code from the SVN repositories on R-Forge.

Usage

read_rforge(path, project, extra = "")

Arguments

path relative path to the source script on R-Forge

project name of the R-Forge project

extra extra parameters to be passed to the URL (e.g. extra = '&revision=48' to
check out the source of revision 48)

Value

A character vector of the source code.

Author(s)

Yihui Xie and Peter Ruckdeschel

Examples

library(knitr)

relies on r-forge.r-project.org being accessible
read_rforge("rgl/R/axes.R", project = "rgl")
read_rforge("rgl/R/axes.R", project = "rgl", extra = "&revision=519")

render_html Set output hooks for different output formats

Description

These functions set built-in output hooks for LaTeX, HTML, Markdown, reStructuredText, Asci-
iDoc and Textile.

render_html 57

Usage

render_html()

render_asciidoc()

render_latex()

render_sweave()

render_listings()

render_markdown(strict = FALSE, fence_char = "`")

render_jekyll(highlight = c("pygments", "prettify", "none"), extra = "")

render_rst(strict = FALSE)

render_textile()

Arguments

strict whether to use strict markdown or reST syntax; for markdown: if TRUE, code
blocks will be indented by 4 spaces, otherwise they are put in fences made by
three backticks; for reST, if TRUE, code is put under two colons and indented by
4 spaces, otherwise is put under the ‘sourcecode’ directive (e.g. it is useful for
Sphinx)

fence_char a single character to be used in the code blocks fence (e.g. it can be a backtick
or a tilde, depending on your Markdown rendering engine)

highlight which code highlighting engine to use: for pygments, the Liquid syntax is used
(default approach Jekyll); for prettify, the output is prepared for the JavaScript
library ‘prettify.js’; for none, no highlighting engine will be used (code
blocks are indented by 4 spaces)

extra extra tags for the highlighting engine; for pygments, it can be 'linenos'; for
prettify, it can be 'linenums'

Details

There are three variants of markdown documents: ordinary markdown (render_markdown(strict = TRUE)),
extended markdown (e.g. GitHub Flavored Markdown and pandoc; render_markdown(strict = FALSE)),
and Jekyll (a blogging system on GitHub; render_jekyll()). For LaTeX output, there are three
variants as well: knitr’s default style (render_latex(); use the LaTeX framed package), Sweave
style (render_sweave(); use ‘Sweave.sty’) and listings style (render_listings(); use LaTeX
listings package). Default HTML output hooks are set by render_html(); render_rst() and
render_asciidoc() are for reStructuredText and AsciiDoc respectively.

These functions can be used before knit() or in the first chunk of the input document (ideally this
chunk has options include = FALSE and cache = FALSE) so that all the following chunks will be
formatted as expected.

58 rocco

You can use knit_hooks to further customize output hooks; see references.

Value

NULL; corresponding hooks are set as a side effect

References

See output hooks in http://yihui.name/knitr/hooks.

Jekyll and Liquid: https://github.com/jekyll/jekyll/wiki/Liquid-Extensions; prettify.js:
http://code.google.com/p/google-code-prettify/

rocco Knit R Markdown using the classic Docco style

Description

The classic Docco style is a two-column layout, with text in the left and code in the right column.

Usage

rocco(input, ...)

Arguments

input path of the input R Markdown file

... arguments to be passed to knit2html

Details

The output HTML page supports resizing and hiding/showing the two columns. Move the cursor to
the center of the page, and it will change to a bidirectional resize cursor; drag the cursor to resize
the two columns. Press the key t to hide the code column (show the text column only), and press
again to hide the text column (show code).

Value

An HTML file is written, and its name is returned.

Author(s)

Weicheng Zhu and Yihui Xie

References

The Docco package by Jeremy Ashkenas: https://github.com/jashkenas/docco

http://yihui.name/knitr/hooks
https://github.com/jekyll/jekyll/wiki/Liquid-Extensions
http://code.google.com/p/google-code-prettify/
https://github.com/jashkenas/docco

rst2pdf 59

Examples

rocco_view = function(input) {
if (!file.exists(input))

return()
o = rocco(input, header = "", quiet = TRUE)
if (interactive())

browseURL(o)
}
knit these two vignettes using the docco style
rocco_view(system.file("doc", "docco-classic.Rmd", package = "knitr"))
rocco_view(system.file("doc", "knit_expand.Rmd", package = "knitr"))

rst2pdf A wrapper for rst2pdf

Description

Convert reST to PDF using rst2pdf (which converts from rst to PDF using the ReportLab open-
source library).

Usage

rst2pdf(input, command = "rst2pdf", options = "")

Arguments

input the input rst file

command a character string which gives the path of the rst2pdf program (if it is not in
PATH, the full path has to be given)

options extra command line options, e.g. '-v'

Value

An input file ‘*.rst’ will produce ‘*.pdf’ and this output filename is returned if the conversion
was successful.

Author(s)

Alex Zvoleff and Yihui Xie

References

https://github.com/rst2pdf/rst2pdf

See Also

knit2pdf

https://github.com/rst2pdf/rst2pdf

60 set_header

set_alias Set aliases for chunk options

Description

We do not have to use the chunk option names given in knitr; we can set aliases for them. The
aliases are a named character vector; the names are aliases and the elements in this vector are the
real option names.

Usage

set_alias(...)

Arguments

... named arguments (argument names are aliases, and argument values are real
chunk options)

Value

NULL (opts_knit$get('aliases') is modified as the side effect)

Examples

set_alias(w = "fig.width", h = "fig.height")
then we can use options w and h in chunk headers instead of fig.width and
fig.height

set_header Set the header information

Description

Some output documents may need appropriate header information. For example, for LaTeX output,
we need to write ‘\usepackage{tikz}’ into the preamble if we use tikz graphics; this function sets
the header information to be written into the output.

Usage

set_header(...)

Arguments

... the header components; currently possible components are highlight, tikz
and framed, which contain the necessary commands to be used in the HTML
header or LaTeX preamble; note HTML output does not use the tikz and
framed components (they do not make sense to HTML)

set_parent 61

Details

By default, knitr will set up the header automatically. For example, if the tikz device is used,
knitr will add ‘\usepackage{tikz}’ to the LaTeX preamble, and this is done by setting the header
component tikz to be a character string: set_header(tikz = '\usepackage{tikz}'). Similary,
when we highlight R code using the highlight package (i.e. the chunk option highlight = TRUE),
knitr will set the highlight component of the header vector automatically; if the output type is
HTML, this component will be different – instead of LaTeX commands, it contains CSS definitions.

For power users, all the components can be modified to adapt to a customized type of output. For
instance, we can change highlight to LaTeX definitions of the listings package (and modify the
output hooks accordingly), so we can decorate R code using the listings package.

Value

The header vector in opts_knit is set.

Examples

set_header(tikz = "\\usepackage{tikz}")
opts_knit$get("header")

set_parent Specify the parent document of child documents

Description

This function extracts the LaTeX preamble of the parent document to use for the child document,
so that the child document can be compiled as an individual document.

Usage

set_parent(parent)

Arguments

parent path to the parent document (relative to the current child document)

Details

When the preamble of the parent document also contains code chunks and inline R code, they will
be evaluated as if they were in this child document. For examples, when knitr hooks or other
options are set in the preamble of the parent document, it will apply to the child document as well.

Value

The preamble is extracted and stored to be used later when the complete output is written.

62 spin

Note

Obviously this function is only useful when the output format is LaTeX. This function only works
when the child document is compiled in a standalone mode using knit() (instead of being called
in knit_child()); when the parent document is compiled, this function in the child document will
be ignored.

References

http://yihui.name/knitr/demo/child/

Examples

can use, e.g. \Sexpr{set_parent('parent_doc.Rnw')} or

<<setup-child, include=FALSE>>=

set_parent('parent_doc.Rnw')

@

spin Spin goat’s hair into wool

Description

This function takes a specially formatted R script and converts it to a literate programming docu-
ment. By default normal text (documentation) should be written after the roxygen comment (#')
and code chunk options are written after #+ or #- or # ----.

Usage

spin(hair, knit = TRUE, report = TRUE, text = NULL, envir = parent.frame(),
format = c("Rmd", "Rnw", "Rhtml", "Rtex", "Rrst"), doc = "^#+'[]?",
inline = "^[{][{](.+)[}][}][]*$", comment = c("^[#]*/[*]", "^.*[*]/ *$"),
precious = !knit && is.null(text))

Arguments

hair the path to the R script

knit logical: whether to compile the document after conversion

report logical: whether to generate report for ‘Rmd’, ‘Rnw’ and ‘Rtex’ output (ignored
if knit = FALSE)

text a character vector as an alternative way to hair to provide the R source; if text
is not NULL, hair will be ignored

envir the environment for knit() to evaluate the code

http://yihui.name/knitr/demo/child/

spin 63

format character: the output format (it takes five possible values); the default is R Mark-
down

doc a regular expression to identify the documentation lines; by default it follows
the roxygen convention, but it can be customized, e.g. if you want to use ## to
denote documentation, you can use '^##\\s*'

inline a regular expression to identify inline R expressions; by default, code of the
form ((code)) on its own line is treated as an inline expression

comment a pair of regular expressions for the start and end delimiters of comments; the
lines between a start and an end delimiter will be ignored; by default, the delim-
iters are /* in the beginning and */ in the end of a line (following the convention
of C comments)

precious logical: whether intermediate files (e.g., .Rmd files when format is "Rmd")
should be preserved; default FALSE if knit == TRUE and input is a file

Details

Obviously the goat’s hair is the original R script, and the wool is the literate programming document
(ready to be knitted).

Value

If text is NULL, the path of the final output document, otherwise the content of the output.

Note

If the output format is Rnw and no document class is specified in roxygen comments, this function
will automatically add the article class to the LaTeX document so that it is complete and can
be compiled. You can always specify the document class and other LaTeX settings in roxygen
comments manually.

When the output format is Rmd, it is compiled to HTML via knit2html(), which uses R Markdown
v1 instead of v2. If you want to use the latter, you should call rmarkdown::render() instead.

Author(s)

Yihui Xie, with the original idea from Richard FitzJohn (who named it as sowsear() which meant
to make a silk purse out of a sow’s ear)

References

http://yihui.name/knitr/demo/stitch/

See Also

stitch (feed a template with an R script)

http://yihui.name/knitr/demo/stitch/

64 spin_child

Examples

#' write normal text like this and chunk options like below

#+ label, opt=value

/*
#' these lines are treated as comments in spin()
1 + 1
*/

(s = system.file("examples", "knitr-spin.R", package = "knitr"))
spin(s) # default markdown
o = spin(s, knit = FALSE) # convert only; do not make a purse yet
knit2html(o) # compile to HTML

other formats
spin(s, FALSE, format = "Rnw") # you need to write documentclass after #'
spin(s, FALSE, format = "Rhtml")
spin(s, FALSE, format = "Rtex")
spin(s, FALSE, format = "Rrst")

spin_child Spin a child R script

Description

This function is similar to knit_child() but is used in R scripts instead. When the main R script is
not called via spin(), this function simply executes the child script via sys.source(), otherwise
it calls spin() to spin the child script into a source document, and uses knit_child() to compile
it. You can call this function in R code, or using the syntax of inline R expressions in spin() (e.g.
{{knitr::spin_child('script.R')}}).

Usage

spin_child(input, format)

Arguments

input the filename of the input R script

format to be passed to format in spin(); if not provided, it will be guessed from the
current knitting process

Value

A character string of the knitted R script.

stitch 65

stitch Automatically create a report based on an R script and a template

Description

This is a convenience function for small-scale automatic reporting based on an R script and a tem-
plate. The default template is an Rnw file (LaTeX); stitch_rhtml() and stitch_rmd() are wrap-
pers on top of stitch() using the R HTML and R Markdown templates respectively.

Usage

stitch(script, template = system.file("misc", "knitr-template.Rnw", package = "knitr"),
output = NULL, text = NULL, envir = parent.frame())

stitch_rhtml(..., envir = parent.frame())

stitch_rmd(..., envir = parent.frame())

Arguments

script path to the R script

template path of the template to use (by default the Rnw template in this package; there
is also an HTML template in knitr)

output the output filename (passed to knit); by default it uses the base filename of the
script

text a character vector as an alternative way to provide the input file

envir the environment in which the code chunks are to be evaluated (for example,
parent.frame(), new.env(), or globalenv())

... arguments passed to stitch()

Details

The first two lines of the R script can contain the title and author of the report in comments of the
form ‘## title:’ and ‘## author:’. The template must have a token ‘%sCHUNK_LABEL_HERE’,
which will be used to input all the R code from the script. See the examples below.

The R script may contain chunk headers of the form ‘## ---- label,opt1=val1, opt2=val2’,
which will be copied to the template; if no chunk headers are found, the whole R script will be
inserted into the template as one code chunk.

Value

path of the output document

See Also

spin (turn a specially formatted R script to a report)

66 Sweave2knitr

Examples

s = system.file("misc", "stitch-test.R", package = "knitr")
if (interactive()) stitch(s) # compile to PDF

HTML report
stitch(s, system.file("misc", "knitr-template.Rhtml", package = "knitr"))

or convert markdown to HTML
stitch(s, system.file("misc", "knitr-template.Rmd", package = "knitr"))

Sweave2knitr Convert Sweave to knitr documents

Description

This function converts an Sweave document to a knitr-compatible document.

Usage

Sweave2knitr(file, output = gsub("[.]([^.]+)$", "-knitr.\\1", file),
encoding = getOption("encoding"), text = NULL)

Arguments

file the filename of the Rnw file

output the output filename (by default ‘file.Rnw’ produces ‘file-knitr.Rnw’); if
text is not NULL, no output file will be produced

encoding the encoding of the Rnw file

text an alternative way to provide the Sweave code as a character string (if provided,
the file will be ignored)

Details

The pseudo command ‘\SweaveInput{file.Rnw}’ is converted to a code chunk header <<child='file.Rnw'>>=.

Similarly ‘\SweaveOpts{opt = value}’ is converted to a code chunk ‘opts_chunk$set(opt = value)’
with the chunk option include = FALSE; the options are automatically fixed in the same way as
local chunk options (explained below).

The Sweave package ‘\usepackage{Sweave}’ in the preamble is removed because it is not re-
quired.

Chunk options are updated if necessary: option values true and false are changed to TRUE and
FALSE respectively; fig=TRUE is removed because it is not necessary for knitr (plots will be auto-
matically generated); fig=FALSE is changed to fig.keep='none'; the devices pdf/jpeg/png/eps/tikz=TRUE
are converted to dev='pdf'/'jpeg'/'png'/'postscript'/'tikz'; pdf/jpeg/png/eps/tikz=FALSE
are removed; results=tex/verbatim/hide are changed to results='asis'/'markup'/'hide';
width/height are changed to fig.width/fig.height; prefix.string is changed to fig.path;
print/term/prefix=TRUE/FALSE are removed; most of the character options (e.g. engine and

vignette_engines 67

out.width) are quoted; keep.source=TRUE/FALSE is changed to tidy=FALSE/TRUE (note the or-
der of values).

If a line @ (it closes a chunk) directly follows a previous @, it is removed; if a line @ appears before
a code chunk and no chunk is before it, it is also removed, because knitr only uses one ‘@’ after
‘<<>>=’ by default (which is not the original Noweb syntax but more natural).

Value

If text is NULL, the output file is written and NULL is returned, otherwise the converted text string
is returned.

Note

If ‘\SweaveOpts{}’ spans across multiple lines, it will not be fixed, and you have to fix it manu-
ally. The LaTeX-style syntax of Sweave chunks are ignored (see ?SweaveSyntaxLatex); only the
Noweb syntax is supported.

References

The motivation of the changes in the syntax: http://yihui.name/knitr/demo/sweave/

See Also

Sweave, gsub

Examples

Sweave2knitr(text = "<<echo=TRUE>>=") # this is valid
Sweave2knitr(text = "<<png=true>>=") # dev='png'
Sweave2knitr(text = "<<eps=TRUE, pdf=FALSE, results=tex, width=5, prefix.string=foo>>=")
Sweave2knitr(text = "<<,png=false,fig=TRUE>>=")
Sweave2knitr(text = "\\SweaveOpts{echo=false}")
Sweave2knitr(text = "\\SweaveInput{hello.Rnw}")
Sweave example in utils
testfile = system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")
Sweave2knitr(testfile, output = "Sweave-test-knitr.Rnw")
knit("Sweave-test-knitr.Rnw") # or knit2pdf() directly

vignette_engines Package vignette engines

Description

Since R 3.0.0, package vignettes can use non-Sweave engines, and knitr has provided a few engines
to compile vignettes via knit() with different templates. See http://yihui.name/knitr/demo/
vignette/ for more information.

http://yihui.name/knitr/demo/sweave/
http://yihui.name/knitr/demo/vignette/
http://yihui.name/knitr/demo/vignette/

68 wrap_rmd

Note

If you use the knitr::rmarkdown engine, please make sure that you put rmarkdown in the
‘Suggests’ field of your ‘DESCRIPTION’ file. Also make sure the executables pandoc and pandoc-citeproc
can be found by rmarkdown during R CMD build. If you build your package from RStudio,
this is normally not a problem. If you build the package outside RStudio, run which pandoc and
which pandoc-citeproc in the terminal (or Sys.which('pandoc') and Sys.which('pandoc-citeproc')
in R) to check if pandoc and pandoc-citeproc can be found. If you use Linux, you may make
symlinks to the Pandoc binaries in RStudio: https://github.com/rstudio/rmarkdown/blob/
master/PANDOC.md, or install pandoc and pandoc-citeproc separately.

When the rmarkdown package is not installed or not available, or pandoc or pandoc-citeproc
cannot be found, the knitr::rmarkdown engine will fall back to the knitr::knitr engine, which
uses R Markdown v1 based on the markdown package.

Examples

library(knitr)
vig_list = tools::vignetteEngine(package = "knitr")
str(vig_list)
vig_list[["knitr::knitr"]][c("weave", "tangle")]
vig_list[["knitr::knitr_notangle"]][c("weave", "tangle")]
vig_list[["knitr::docco_classic"]][c("weave", "tangle")]

wrap_rmd Wrap long lines in Rmd files

Description

This function wraps long paragraphs in an R Markdown file. Other elements are not wrapped: the
YAML preamble, fenced code blocks, section headers and indented elements. The main reason for
wrapping long lines is to make it easier to review differences in version control.

Usage

wrap_rmd(file, width = 80, text = NULL, backup)

Arguments

file the input Rmd file

width the expected line width

text an alternative to file to input the text lines

backup the path to back up the original file (in case anything goes wrong); if NULL, it
is ignored; by default it is constructed from file by adding __ before the base
filename

Value

If file is provided, it is overwritten; if text is provided, a character vector is returned.

https://github.com/rstudio/rmarkdown/blob/master/PANDOC.md
https://github.com/rstudio/rmarkdown/blob/master/PANDOC.md

write_bib 69

Note

Currently it does not wrap blockquotes or lists (ordered or unordered). This feature may or may not
be added in the future.

Examples

wrap_rmd(text = c("```", "1+1", "```", "- a list item", "> a quote", "",
paste(rep("this is a normal paragraph", 5), collapse = " ")))

write_bib Generate BibTeX bibliography databases for R packages

Description

This function uses citation and toBibtex to create bib entries for R packages and write them in
a file. Only the auto-generated citations are included for a package. This function can facilitate
the auto-generation of bibliography databases for R packages, and it is easy to regenerate all the
citations after updating R packages.

Usage

write_bib(x = .packages(), file = "", tweak = TRUE, width = NULL,
prefix = getOption("knitr.bib.prefix", "R-"))

Arguments

x package names (packages which are not installed are ignored)

file the (‘.bib’) file to write (by default writes to the R console; ignored if it is NULL)

tweak whether to fix some known problems in the citations, especially non-standard
format of authors

width the width of lines in bibliographyb entries (if NULL, lines will not be wrapped)

prefix a prefix string for keys in BibTeX entries; by default, it is ‘R-’ unless option('knitr.bib.prefix')
has been set to another string

Details

The citation is forced to be generated from the ‘DESCRIPTION’ file of the package (citation(auto = TRUE)).
The keyword ‘R-pkgname’ is used for the bib item, where ‘pkgname’ is the name of the package.
All references specified in the ‘CITATION’ file of the package are ignored. The main purpose of
this function is to automate the generation of the package citation information because it often
changes (e.g. author, year, package version, ...). By comparison, paper/book citations don’t change
too often, so it is not a lot of work even if you just cut and paste such bibliography entries from
toBibtex(citation()).

Value

a list containing the citations (also written to the file as a side effect)

70 write_bib

Note

Some packages on CRAN do not have standard bib entries, which was once reported by Michael
Friendly at https://stat.ethz.ch/pipermail/r-devel/2010-November/058977.html. I find
this a real pain, and there are no easy solutions except contacting package authors to modify their
DESCRIPTION files. Anyway, the argument tweak has provided ugly hacks to deal with packages
which are known to be non-standard in terms of the format of citations; tweak = TRUE is by no
means intended to hide or modify the original citation information. It is just due to the loose re-
quirements on package authors for the DESCRIPTION file. On one hand, I apologize if it really
mangles the information about certain packages; on the other, I strongly recommend package au-
thors to consider the ‘Authors@R’ field (see the manual Writing R Extensions) to make it easier for
other people to cite R packages. See knitr:::.tweak.bib for details of tweaks. Also note this
is subject to future changes since R packages are being updated. If you want to contribute more
tweaks, please edit the file ‘inst/misc/tweak_bib.csv’ in the source package.

Author(s)

Yihui Xie and Michael Friendly

Examples

write_bib(c("RGtk2", "gWidgets"), file = "R-GUI-pkgs.bib")
write_bib(c("animation", "rgl", "knitr", "ggplot2"))
write_bib(c("base", "parallel", "MASS")) # base and parallel are identical
write_bib("cluster", prefix = "") # a empty prefix
write_bib("digest", prefix = "R-pkg-") # a new prefix
write_bib("digest", tweak = FALSE) # original version

what tweak=TRUE does
str(knitr:::.tweak.bib)

https://stat.ethz.ch/pipermail/r-devel/2010-November/058977.html

Index

∗Topic datasets
all_patterns, 6
knit_engines, 32
knit_hooks, 36
knit_patterns, 40
knit_theme, 43
opts_chunk, 46
opts_hooks, 48
opts_knit, 48
opts_template, 50
rand_seed, 53

all_labels, 5
all_patterns, 6, 40
all_rcpp_labels (all_labels), 5
as.character, 7
asis_output, 6, 12, 41
aspell, 35

citation, 69
clean_cache, 7
combine_words, 8
current_input, 9

demo, 54
dep_auto, 9, 10
dep_prev, 10, 10

engine_output, 11
extract_raw_output, 11

fig_chunk, 12
fig_path, 13
file, 25, 28–30, 51
for, 24
format, 23

globalenv, 25, 28–31, 65
grep, 40
gsub, 67

hook_ffmpeg_html, 14
hook_movecode, 15
hook_optipng (hook_pdfcrop), 16
hook_pdfcrop, 16
hook_plot_asciidoc (hook_plot_html), 17
hook_plot_custom, 18
hook_plot_custom (hook_pdfcrop), 16
hook_plot_html, 17
hook_plot_md (hook_plot_html), 17
hook_plot_rst (hook_plot_html), 17
hook_plot_tex (hook_plot_html), 17
hook_plot_textile (hook_plot_html), 17
hook_pngquant (hook_pdfcrop), 16
hook_purl (hook_pdfcrop), 16
hook_r2swf (hook_ffmpeg_html), 14
hook_rgl, 17
hook_scianimator (hook_ffmpeg_html), 14
hook_webgl, 17

iconv, 30
image_uri, 19
imgur_upload, 19
include_app (include_url), 22
include_graphics, 21, 22
include_url, 22
inline_expr, 22

kable, 23, 41
knit, 4, 9, 10, 17, 20, 25, 25, 28, 29, 31, 33,

36, 44, 62, 65, 67
knit2html, 27, 58, 63
knit2pdf, 28, 44, 59
knit2wp, 30
knit_child, 26, 31, 62, 64
knit_engines, 11, 32
knit_exit, 33
knit_expand, 34
knit_filter, 35
knit_global, 36
knit_hooks, 36, 48, 58

71

72 INDEX

knit_meta, 37
knit_meta_add (knit_meta), 37
knit_params, 37, 39
knit_params_yaml, 39
knit_patterns, 6, 26, 40, 52
knit_print, 7, 41
knit_rd, 42
knit_rd_all (knit_rd), 42
knit_theme, 43
knit_watch, 44
knitr (knitr-package), 4
knitr-package, 4

lazyLoad, 45
load_cache, 45
ls, 36

markdownToHTML, 27, 28

new.env, 25, 28–31, 65
normal_print (knit_print), 41

option, 69
options, 49
opts_chunk, 17, 46
opts_current (opts_chunk), 46
opts_hooks, 48
opts_knit, 26, 48
opts_template, 50

pandoc, 50
par, 16
parent.frame, 25, 28–31, 65
pat_asciidoc (pat_rnw), 52
pat_brew (pat_rnw), 52
pat_html (pat_rnw), 52
pat_md (pat_rnw), 52
pat_rnw, 26, 27, 52
pat_rst (pat_rnw), 52
pat_tex (pat_rnw), 52
pat_textile (pat_rnw), 52
plot_crop, 53
purl, 16, 37
purl (knit), 25

rand_seed, 53
raw_output (extract_raw_output), 11
Rd2HTML, 42
read.dcf, 51
read_chunk, 17, 54, 54

read_demo (read_chunk), 54
read_rforge, 56
recordPlot, 16, 18
render, 63
render_asciidoc (render_html), 56
render_html, 56
render_jekyll (render_html), 56
render_latex, 26, 27
render_latex (render_html), 56
render_listings (render_html), 56
render_markdown (render_html), 56
render_rst (render_html), 56
render_sweave (render_html), 56
render_textile (render_html), 56
restore_raw_output

(extract_raw_output), 11
rgl.postscript, 17
rgl.snapshot, 17
rocco, 58
rst2pdf, 29, 59

set_alias, 60
set_header, 60
set_parent, 61
setwd, 26
spin, 62, 64, 65
spin_child, 64
Stangle, 25
stitch, 63, 65
stitch_rhtml (stitch), 65
stitch_rmd (stitch), 65
Sweave, 67
Sweave2knitr, 4, 66
sys.source, 64
system2, 32

texi2pdf, 29
toBibtex, 69

vignette_engines, 67

wrap_rmd, 68
write_bib, 69

	knitr-package
	all_labels
	all_patterns
	asis_output
	clean_cache
	combine_words
	current_input
	dep_auto
	dep_prev
	engine_output
	extract_raw_output
	fig_chunk
	fig_path
	hook_ffmpeg_html
	hook_movecode
	hook_pdfcrop
	hook_plot_html
	image_uri
	imgur_upload
	include_graphics
	include_url
	inline_expr
	kable
	knit
	knit2html
	knit2pdf
	knit2wp
	knit_child
	knit_engines
	knit_exit
	knit_expand
	knit_filter
	knit_global
	knit_hooks
	knit_meta
	knit_params
	knit_params_yaml
	knit_patterns
	knit_print
	knit_rd
	knit_theme
	knit_watch
	load_cache
	opts_chunk
	opts_hooks
	opts_knit
	opts_template
	pandoc
	pat_rnw
	plot_crop
	rand_seed
	read_chunk
	read_rforge
	render_html
	rocco
	rst2pdf
	set_alias
	set_header
	set_parent
	spin
	spin_child
	stitch
	Sweave2knitr
	vignette_engines
	wrap_rmd
	write_bib
	Index

