
The irlba Package

Bryan W. Lewis
blewis@illposed.net,

adapted from the work of:
Jim Baglama (University of Rhode Island)

and Lothar Reichel (Kent State University).

January 26, 2018

1 Introduction

The irlba package provides a fast way to compute partial singular value decompositions (SVD)
of large matrices. It is an R implementation of the implicitly restarted Lanczos bidiagonalization
algorithm of Jim Baglama and Lothar Reichel1. The irlba package source code is maintained at
http://rforge.net/irlba/. The web homepage for the irlba package is http://illposed.net/irlba.html.
An introductory example using the Netflix prize data set may be found at the web link
http://goo.gl/fRech.

The irlba package works with regular dense real- and complex-valued R matrices and sparse
real-valued matrices from the Matrix package. The package provides a simple way to work with
other matrix classes including big.matrix from the bigmemory package and others. The irlba is
both faster and more memory efficient than the usual R svd function for computing a few singular
vectors and corresponding singular values of a matrix. It may be used to compute a partial SVD
corresponding to largest singular values of a matrix, and includes an experimental routine that can
estimate the singular vectors associated with the smallest few singular values too. The package
takes advantage of available high-performance linear algebra libraries if R is compiled to use them.

We summarize the algorithm and provide a few examples. A much more detailed description and
discussion of the algorithm may be found in the cited Baglama-Reichel reference.

1Restarted Block Lanczos Bidiagonalization Methods (with L. Reichel) Numerical Algorithms, 43 (2006), pp.
251-272

http://rforge.net/irlba/
http://illposed.net/irlba.html
http://goo.gl/fRech

The irlba Package

2 The SVD and Partial SVD

The singular value decomposition of the matrix A ∈ R`×n, ` ≥ n may be defined as:

A =
n∑

j=1

σjujv
T
j , vTj vk = uTj uk =

{
1 if j = k,
0 o.w.,

where uj ∈ R`, vj ∈ Rn, j = 1, 2, . . . , n, and σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Let 1 ≤ k < n. We define
the partial SVD of A to be:

Ak :=
k∑

j=1

σjujv
T
j

The following simple example shows how to use irlba to compute the five largest singular values
and corresponding singular vectors of a 5000×5000 matrix. We compare to the usual R svd function
and report timings for our test machine, an 8-CPU core, 2.0 GHz AMD Opteron server with 16 GB
RAM, using R version 2.13.0 compiled with the high performance AMD ACML core math libraries.

> library(’irlba’)

> A <- matrix(rnorm(5000*5000), 5000)

> t1 <- proc.time()

> L <- irlba(A, nu=5, nv=5)

> print(proc.time() - t1)

user system elapsed

41.640 0.470 36.985

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 137098 7.4 350000 18.7 350000 18.7

Vcells 25180235 192.2 52881183 403.5 52881005 403.5

Now, compare with the standard svd function:

> t1 <- proc.time()

> S <- svd(A, nu=5, nv=5)

> print(proc.time() - t1)

user system elapsed

616.035 4.396 187.371

> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 137109 7.4 350000 18.7 350000 18.7

Vcells 25235234 192.6 168397903 1284.8 200272760 1528.0

2

The irlba Package

Compare the singular values computed by each method:

> sqrt (crossprod(S$d[1:5]-L$d)/crossprod(S$d[1:5]))

[,1]

[1,] 1.56029e-12

The irlba method uses less than one tenth total CPU time as the svd method in this example,
less than one fifth the total run time, and about one fourth the peak memory.

2.1 Differences with svd

The irlba function is designed to compute a partial singular value decomposition. It is largely
compatible with the usual R svd function but there are some differences. In particular:

1. The irlba function only computes the number of singular values corresponding to the nu and
nv parameters. For example, if 5 singular vectors are desired (nu=nv=5), then only the five
corresponding singular values are computed. The standard R svd function always returns
the total set of singular values for the matrix, regardless of how many singular vectors are
specified.

2. The irlba function is an iterative method that continues until either a tolerance or maximum
number of iterations is reached. There exists pathological problems for which irlba does
not converge (see the references for more information). Such problems are not likely to be
encountered, but the method will fail with an error after the iteration limit is reached in those
cases.

Watch out for the first difference noted above.

2.2 Computing the Smallest Singular Values

The irlba function may be used to compute either the largest or smallest singular values (and
corresponding singular vectors) of a matrix. The default is to compute the largest singular values.
Use the sigma=’ss’ option to compute the smallest values, illustrated below:

L <- irlba(A, nu=5, nv=5, sigma=’ss’)

Harmonic Ritz vectors are used by default to augment the Lanczos process when the smallest
singular values are desired. See the reference for a discussion of the Lanczos process augmentation
strategy.

3

The irlba Package

2.3 User-defined Matrix Operations

The irlba function includes a provision for specifying custom matrix operators. Using this feature,
irlba may be used with the big.matrix class from the bigmemory/bigalgebra packages, or to
compute the partial SVD of matrix-free linear operators, for example.

User-defined matrix operations are specified using the optional matmul parameter. If defined, it
must be a function that takes three arguments as follows:

matmul <- function (A, B, transpose)

{

if(transpose) return(t(A) %*% B)

return(A %*% B)

}

Replace the above transpose and matrix multiply operations with ones appropriate to your matrix
class.

3 A Quick Summary of the IRLBA Method

3.1 Partial Lanczos Bidiagonalization

Start with a given vector p1. Compute m steps of the Lanczos process:

APm = QmBm

ATQm = PmB
T
m + rme

T
m,

Bm ∈ Rm×m, Pm ∈ Rn×m, Qm ∈ R`×m,

P T
mPm = QT

mQm = Im,

rm ∈ Rn, P T
mrm = 0,

Pm = [p1, p2, . . . , pm].

4

The irlba Package

3.2 Approximating Partial SVD with A Partial Lanczos bidiagonaliza-
tion

ATAPm = ATQmBm

= PmB
T
mBm + rme

T
mBm,

AATQm = APmB
T
m + Arme

T
m,

= QmBmB
T
m + Arme

T
m.

Compute the SVD of Bm:

Bm =
m∑
j=1

σB
j u

B
j

(
vBj
)T
.

(
i.e., Bmv

B
j = σB

j u
B
j , and BT

mu
b
j = σB

j v
B
j .
)

Define: σ̃j := σB
j , ũj := Qmu

B
j , ṽj := Pmv

B
j .

Then:

Aṽj = APmv
B
j

= QmBmv
B
j

= σB
j Qmu

B
j

= σ̃jũj,

and

AT ũj = ATQmu
B
j

= PmB
T
mu

B
j + rme

T
mu

B
j

= σB
j Pmv

B
j + rme

T
mu

B
j

= σ̃j ṽj + rme
T
mu

B
j .

The part in red above represents the error with respect to the exact SVD. The IRLBA strategy is
to iteratively reduce the norm of that error term by augmenting and restarting.

Here is the overall method:

1. Compute the Lanczos process up to step m.

5

The irlba Package

2. Compute k < m approximate singular vectors.

3. Orthogonalize against the approximate singular vectors to get a new starting vector.

4. Continue the Lanczos process with the new starting vector for m more steps.

5. Check for convergence tolerance and exit if met.

6. GOTO 1.

3.3 Sketch of the augmented process...

P̄k+1 := [ṽ1, ṽ2, . . . , ṽk, pm+1],

AP̄k+1 = [σ̃1ũ1, σ̃1ũ2, . . . , σ̃kũk, Apm+1]

Orthogonalize Apm+1 against {ũj}kj=1: Apm+1 =
∑k

j=1 ρjũj + rk.

Q̄k+1 := [ũ1, ũ2, . . . , ũk, rk/‖rk‖],

B̄k+1 :=

σ̃1 ρ1

σ̃2 ρ2
. . . ρk
‖rk‖

 .
AP̄k+1 = Q̄k+1B̄k+1.

6

	Introduction
	The SVD and Partial SVD
	Differences with svd
	Computing the Smallest Singular Values
	User-defined Matrix Operations

	A Quick Summary of the IRLBA Method
	Partial Lanczos Bidiagonalization
	Approximating Partial SVD with A Partial Lanczos bidiagonalization
	Sketch of the augmented process...

