Performs a one- or two-sample Kolmogorov-Smirnov test. Includes the option to perform the two-sample test using the formula notation.
Arguments
- x
A numeric vector of data values or a formula (see details).
- ...
Parameters of the distribution specified (as a character string) by
y
.- y
A numeric vector of data values, a character string naming a cumulative distribution function, or an actual cumulative distribution function. See
ks.test
.- alternative
A string that indicates the alternative hypothesis. See
ks.test
.- exact
NULL
or a logical that indicates whether an exact p-value should be computed. Seeks.test
. Not available if ties are present, nor for the one-sided two-sample case.- data
A data frame that contains the variables in the formula for
x
.
Value
See ks.test
.
Details
This is exactly ks.test
except that a formula may be used for the two-sample situation. The default version is simply a pass through to ks.test
. See ks.test
for more details.
Author
Derek H. Ogle, DerekOgle51@gmail.com
Examples
## see ks.test for other examples
x <- rnorm(50)
y <- runif(30)
df <- data.frame(dat=c(x,y),
grp=factor(rep(c("x","y"),c(50,30))),
stringsAsFactors=FALSE)
## one-sample (from ks.test) still works
ksTest(x+2, "pgamma", 3, 2)
#>
#> Exact one-sample Kolmogorov-Smirnov test
#>
#> data: x
#> D = 0.21652, p-value = 0.01546
#> alternative hypothesis: two-sided
#>
ks.test(x+2, "pgamma", 3, 2)
#>
#> Exact one-sample Kolmogorov-Smirnov test
#>
#> data: x + 2
#> D = 0.21652, p-value = 0.01546
#> alternative hypothesis: two-sided
#>
## first two-sample example in ?ks.test
ksTest(x,y)
#>
#> Exact two-sample Kolmogorov-Smirnov test
#>
#> data: x and y
#> D = 0.6, p-value = 8.598e-07
#> alternative hypothesis: two-sided
#>
ks.test(x,y)
#>
#> Exact two-sample Kolmogorov-Smirnov test
#>
#> data: x and y
#> D = 0.6, p-value = 8.598e-07
#> alternative hypothesis: two-sided
#>
## same as above but using data.frame and formula
ksTest(dat~grp,data=df)
#>
#> Exact two-sample Kolmogorov-Smirnov test
#>
#> data: x and y
#> D = 0.6, p-value = 8.598e-07
#> alternative hypothesis: two-sided
#>